Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings

Crossover design in transcranial direct current stimulation studies on motor learning: potential... AbstractCrossover designs are used by a high proportion of studies investigating the effects of transcranial direct current stimulation (tDCS) on motor learning. These designs necessitate attention to aspects of data collection and analysis to take account of design-related confounds including order, carryover, and period effects. In this systematic review, we appraised the method sections of crossover-designed tDCS studies of motor learning and discussed the strategies adopted to address these factors. A systematic search of 10 databases was performed and 19 research papers, including 21 experimental studies, were identified. Potential risks of bias were addressed in all of the studies, however, not in a rigorous and structured manner. In the data collection phase, unclear methods of randomization, various lengths of washout period, and inconsistency in the counteracting period effect can be observed. In the analytical procedures, the stratification by sequence group was often ignored, and data were treated as if it belongs to a simple repeated-measures design. An inappropriate use of crossover design can seriously affect the findings and therefore the conclusions drawn from tDCS studies on motor learning. The results indicate a pressing need for the development of detailed guidelines for this type of studies to benefit from the advantages of a crossover design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in the Neurosciences de Gruyter

Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings

Loading next page...
 
/lp/degruyter/crossover-design-in-transcranial-direct-current-stimulation-studies-on-jMrRKUwIID
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1607-8470
eISSN
2191-0200
D.O.I.
10.1515/revneuro-2017-0056
Publisher site
See Article on Publisher Site

Abstract

AbstractCrossover designs are used by a high proportion of studies investigating the effects of transcranial direct current stimulation (tDCS) on motor learning. These designs necessitate attention to aspects of data collection and analysis to take account of design-related confounds including order, carryover, and period effects. In this systematic review, we appraised the method sections of crossover-designed tDCS studies of motor learning and discussed the strategies adopted to address these factors. A systematic search of 10 databases was performed and 19 research papers, including 21 experimental studies, were identified. Potential risks of bias were addressed in all of the studies, however, not in a rigorous and structured manner. In the data collection phase, unclear methods of randomization, various lengths of washout period, and inconsistency in the counteracting period effect can be observed. In the analytical procedures, the stratification by sequence group was often ignored, and data were treated as if it belongs to a simple repeated-measures design. An inappropriate use of crossover design can seriously affect the findings and therefore the conclusions drawn from tDCS studies on motor learning. The results indicate a pressing need for the development of detailed guidelines for this type of studies to benefit from the advantages of a crossover design.

Journal

Reviews in the Neurosciencesde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off