Creep behavior of 3D core wood-strand sandwich panels

Creep behavior of 3D core wood-strand sandwich panels AbstractA preliminary experimental evaluation of duration of load and creep effects of lightweight wood-strand sandwich panels (lwW-SSP) was conducted following ASTM D6815-09 to determine the equivalence to the duration of load and creep effects of visually graded lumber as specified in Practice D245. The modulus of rupture (MOR) of lwW-SSP was obtained using four-point bending tests to evaluate their creep and load behavior at three stress levels (15, 40 and 65% of MOR). Two different widths were considered to observe the effect of this parameter. lwW-SSP preformed well under long-term loads, as tertiary creep was not observed at all stress levels and the strain rate decreased over time. The panels met the criteria specified in the standard. None of the specimens failed, the creep rate decreased and the fractional deflection was <2. Accordingly, the duration of load factors of visually graded lumber is applicable to these panels. For the theoretical evaluation of solid wood behavior, viscoelastic models can also be applied to describe the creep behavior of lwW-SSP with wood-strand corrugated cores. An exponential viscoelastic model consisting of five elements accurately approximates the experimental creep behavior of three-dimensional (3D) core sandwich panel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Holzforschung de Gruyter

Creep behavior of 3D core wood-strand sandwich panels

Loading next page...
 
/lp/degruyter/creep-behavior-of-3d-core-wood-strand-sandwich-panels-Tj0Aw4EKls
Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-434X
eISSN
1437-434X
D.O.I.
10.1515/hf-2017-0088
Publisher site
See Article on Publisher Site

Abstract

AbstractA preliminary experimental evaluation of duration of load and creep effects of lightweight wood-strand sandwich panels (lwW-SSP) was conducted following ASTM D6815-09 to determine the equivalence to the duration of load and creep effects of visually graded lumber as specified in Practice D245. The modulus of rupture (MOR) of lwW-SSP was obtained using four-point bending tests to evaluate their creep and load behavior at three stress levels (15, 40 and 65% of MOR). Two different widths were considered to observe the effect of this parameter. lwW-SSP preformed well under long-term loads, as tertiary creep was not observed at all stress levels and the strain rate decreased over time. The panels met the criteria specified in the standard. None of the specimens failed, the creep rate decreased and the fractional deflection was <2. Accordingly, the duration of load factors of visually graded lumber is applicable to these panels. For the theoretical evaluation of solid wood behavior, viscoelastic models can also be applied to describe the creep behavior of lwW-SSP with wood-strand corrugated cores. An exponential viscoelastic model consisting of five elements accurately approximates the experimental creep behavior of three-dimensional (3D) core sandwich panel.

Journal

Holzforschungde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off