Correlation between plasma concentrations of tramadol and its metabolites and the incidence of seizure in tramadol-intoxicated patients

Correlation between plasma concentrations of tramadol and its metabolites and the incidence of... AbstractBackground:Seizure is one of the important symptoms of tramadol poisoning, but its causes are still unknown. The aim of this study is to find a relationship between tramadol and the concentrations of its metabolites versus the incidence of seizures following the consumption of high doses of tramadol.Methods:For this purpose, the blood samples of 120 tramadol-intoxicated patients were collected. The patients were divided in two groups (seizure and non-seizure). The concentrations of tramadol and its metabolites (M1, M2 and M5) were measured by using a high-performance liquid chromatography method. The relationship between tramadol and the levels of its metabolites and seizure incidences was also investigated.Results:In 72% of the patients, seizures occurred in the first 3 h after the ingestion of tramadol. The seizure incidences were significantly correlated with the patients’ gender, concentrations of tramadol, M1 and M2 and the history of previous seizures (p<0.001). The average concentration of M2 was significantly higher in males (p=0.003). A previous history of the use of sedative-hypnotics and the co-ingestion of benzodiazepines and other opioids were shown to significantly decrease the rate of seizure. The rate of seizure was directly related to the concentrations of tramadol and its metabolites. Higher M2 concentration in males can be considered a reason for increased incidences of seizures in males. The plasma concentration of M1 affected the onset of seizure.Conclusions:Therefore, it can be concluded that differences in the levels of the metabolites can affect the threshold of seizure in tramadol-intoxicated patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Drug Metabolism and Drug Interactions de Gruyter

Correlation between plasma concentrations of tramadol and its metabolites and the incidence of seizure in tramadol-intoxicated patients

Loading next page...
 
/lp/degruyter/correlation-between-plasma-concentrations-of-tramadol-and-its-jpqspxFqKX
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0162
eISSN
2363-8915
D.O.I.
10.1515/dmpt-2017-0040
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:Seizure is one of the important symptoms of tramadol poisoning, but its causes are still unknown. The aim of this study is to find a relationship between tramadol and the concentrations of its metabolites versus the incidence of seizures following the consumption of high doses of tramadol.Methods:For this purpose, the blood samples of 120 tramadol-intoxicated patients were collected. The patients were divided in two groups (seizure and non-seizure). The concentrations of tramadol and its metabolites (M1, M2 and M5) were measured by using a high-performance liquid chromatography method. The relationship between tramadol and the levels of its metabolites and seizure incidences was also investigated.Results:In 72% of the patients, seizures occurred in the first 3 h after the ingestion of tramadol. The seizure incidences were significantly correlated with the patients’ gender, concentrations of tramadol, M1 and M2 and the history of previous seizures (p<0.001). The average concentration of M2 was significantly higher in males (p=0.003). A previous history of the use of sedative-hypnotics and the co-ingestion of benzodiazepines and other opioids were shown to significantly decrease the rate of seizure. The rate of seizure was directly related to the concentrations of tramadol and its metabolites. Higher M2 concentration in males can be considered a reason for increased incidences of seizures in males. The plasma concentration of M1 affected the onset of seizure.Conclusions:Therefore, it can be concluded that differences in the levels of the metabolites can affect the threshold of seizure in tramadol-intoxicated patients.

Journal

Drug Metabolism and Drug Interactionsde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off