Comparison of the mechanical and wear behaviour of aluminium alloy with homogeneous and functionally graded silicon nitride composites

Comparison of the mechanical and wear behaviour of aluminium alloy with homogeneous and... AbstractHomogeneous and functionally graded LM25 aluminium (Al) composites were fabricated by incorporating silicon nitride (10 wt%, 40 µm) particles through liquid metallurgy and centrifugal casting, respectively. The performance of these composites was compared with unreinforced alloy. The microstructural behaviour of the surfaces of unreinforced alloy, homogeneous composite and functionally graded composite (outer, middle and inner surfaces) were examined through optical microscopy. These surfaces were also evaluated for mechanical properties. An abrasive wear test was conducted on all these surfaces to determine their effect on wear rate. The microstructural results revealed a particle-rich region at the outer surface of the functionally graded composite material and uniform dispersion of reinforcement particles in the homogeneous composite. The outer region of the functionally graded composite showed greater hardness and the homogeneous composite displayed higher tensile strength. The abrasive wear rate increased with an increase in load and decreased with an increase in speed, and the particle-rich outer surface showed a lower wear rate. Scanning electron microscopy analysis revealed a particle-rich outer surface of functionally graded composite with fewer scratches. Therefore, higher wear resistance was observed at the outer periphery of functionally graded composites and this property can be well-utilised in automotive tribo-components such as in cylinder liners for improved performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science and Engineering of Composite Materials de Gruyter

Comparison of the mechanical and wear behaviour of aluminium alloy with homogeneous and functionally graded silicon nitride composites

Loading next page...
 
/lp/degruyter/comparison-of-the-mechanical-and-wear-behaviour-of-aluminium-alloy-4jx0Gj39wv
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0359
eISSN
2191-0359
D.O.I.
10.1515/secm-2015-0160
Publisher site
See Article on Publisher Site

Abstract

AbstractHomogeneous and functionally graded LM25 aluminium (Al) composites were fabricated by incorporating silicon nitride (10 wt%, 40 µm) particles through liquid metallurgy and centrifugal casting, respectively. The performance of these composites was compared with unreinforced alloy. The microstructural behaviour of the surfaces of unreinforced alloy, homogeneous composite and functionally graded composite (outer, middle and inner surfaces) were examined through optical microscopy. These surfaces were also evaluated for mechanical properties. An abrasive wear test was conducted on all these surfaces to determine their effect on wear rate. The microstructural results revealed a particle-rich region at the outer surface of the functionally graded composite material and uniform dispersion of reinforcement particles in the homogeneous composite. The outer region of the functionally graded composite showed greater hardness and the homogeneous composite displayed higher tensile strength. The abrasive wear rate increased with an increase in load and decreased with an increase in speed, and the particle-rich outer surface showed a lower wear rate. Scanning electron microscopy analysis revealed a particle-rich outer surface of functionally graded composite with fewer scratches. Therefore, higher wear resistance was observed at the outer periphery of functionally graded composites and this property can be well-utilised in automotive tribo-components such as in cylinder liners for improved performance.

Journal

Science and Engineering of Composite Materialsde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off