Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles

Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles AbstractThe synthesis of oxides has a significant role in their improved properties. This is why a green method is used to gain stable oxide nanoparticles. Zn2+ doped magnesium oxide (MgO) nanoparticles were synthesized through a green method, extracting Aloe vera latex media. The green method has the advantages of being a cost-effective, innocuous, eco-friendly method. Firstly, thanks to the structure of Aloe vera latex, its extract has an important role in morphology, and crystal size of MgO structure, which leads to homogenous nanoparticles dispersion. The elliptical particles with ranges from 45 nm to 65 nm were observed by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Furthermore, the effect of calcination temperature was investigated, showing that increasing calcination temperature made larger particles with sharper peaks in X-ray diffraction (XRD) analysis. The strain value (ε) and crystallite size by Williamson-Hall (nm), dislocation density, and crystallinity index were evaluated. Finally, energy dispersive X-ray spectroscopy (EDS) confirmed the doping of Zn2+ in MgO nanoparticles. Fourier transform infrared (FT-IR) and HRTEM analyses were also used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Green Processing and Synthesis de Gruyter

Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles

Loading next page...
 
/lp/degruyter/characterization-and-low-cost-green-synthesis-of-zn2-doped-mgo-eF1DQmAOkY
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-9550
eISSN
2191-9550
D.O.I.
10.1515/gps-2016-0219
Publisher site
See Article on Publisher Site

Abstract

AbstractThe synthesis of oxides has a significant role in their improved properties. This is why a green method is used to gain stable oxide nanoparticles. Zn2+ doped magnesium oxide (MgO) nanoparticles were synthesized through a green method, extracting Aloe vera latex media. The green method has the advantages of being a cost-effective, innocuous, eco-friendly method. Firstly, thanks to the structure of Aloe vera latex, its extract has an important role in morphology, and crystal size of MgO structure, which leads to homogenous nanoparticles dispersion. The elliptical particles with ranges from 45 nm to 65 nm were observed by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Furthermore, the effect of calcination temperature was investigated, showing that increasing calcination temperature made larger particles with sharper peaks in X-ray diffraction (XRD) analysis. The strain value (ε) and crystallite size by Williamson-Hall (nm), dislocation density, and crystallinity index were evaluated. Finally, energy dispersive X-ray spectroscopy (EDS) confirmed the doping of Zn2+ in MgO nanoparticles. Fourier transform infrared (FT-IR) and HRTEM analyses were also used.

Journal

Green Processing and Synthesisde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off