Calculation of the Spontaneous Polarization and the Dielectric Constant for the Ferroelectric N(CH3)4HSO4 Using the Mean Field Model

Calculation of the Spontaneous Polarization and the Dielectric Constant for the Ferroelectric... AbstractThe temperature dependences of the spontaneous polarization and the dielectric constant (susceptibility) are calculated using the mean field model for the ferroelectric N(CH3)4HSO4. Expressions derived from the mean field model for the spontaneous polarization and the inverse susceptibility are fitted to the experimental data from the literature. The fitting parameters in the expansion of the free energy in terms of the spontaneous polarization are determined within the temperature intervals in the ferroelectric and paraelectric phases of N(CH3)4HSO4. Our results show that the temperature dependences of the spontaneous polarization and the dielectric constant as predicted from our mean field model, describe adequately the observed behavior of N(CH3)4HSO4 in the ferroelectric and paraelectric phases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png High Temperature Materials and Processes de Gruyter

Calculation of the Spontaneous Polarization and the Dielectric Constant for the Ferroelectric N(CH3)4HSO4 Using the Mean Field Model

Loading next page...
 
/lp/degruyter/calculation-of-the-spontaneous-polarization-and-the-dielectric-tGqVPraJ80
Publisher
De Gruyter
Copyright
© 2017 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-0324
eISSN
2191-0324
D.O.I.
10.1515/htmp-2016-0016
Publisher site
See Article on Publisher Site

Abstract

AbstractThe temperature dependences of the spontaneous polarization and the dielectric constant (susceptibility) are calculated using the mean field model for the ferroelectric N(CH3)4HSO4. Expressions derived from the mean field model for the spontaneous polarization and the inverse susceptibility are fitted to the experimental data from the literature. The fitting parameters in the expansion of the free energy in terms of the spontaneous polarization are determined within the temperature intervals in the ferroelectric and paraelectric phases of N(CH3)4HSO4. Our results show that the temperature dependences of the spontaneous polarization and the dielectric constant as predicted from our mean field model, describe adequately the observed behavior of N(CH3)4HSO4 in the ferroelectric and paraelectric phases.

Journal

High Temperature Materials and Processesde Gruyter

Published: Sep 26, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off