Autoclave-assisted green synthesis of silver nanoparticles using A. fumigatus mycelia extract and the evaluation of their physico-chemical properties and antibacterial activity

Autoclave-assisted green synthesis of silver nanoparticles using A. fumigatus mycelia extract and... AbstractSilver nanoparticles (AgNPs) were synthesized using Aspergillus fumigatus (A. fumigatus) mycelia extract via the hydrothermal method. The main reducing and stabilizing groups and components of A. fumigatus extract, such as amine, hydroxyl, amid, protein, enzymes, and cell saccharide compounds, were identified by Fourier transform infrared (FT-IR). Central composition design was used to plan the experiments, and response surface methodology was applied to evaluate of the effects of independent variables, including the amount of the prepared extract (5–7 ml) and heating time (10–20 min) at 121°C and 1.5 bar), on the particle size of the synthesized AgNPs, as manifested in broad emission peak (λmax). More stable and spherical monodispersed AgNPs, with mean particle size, polydispersity index (PDI) value, and maximum ζ potential value of 23 nm, 0.270, and +35.3 mV, respectively, were obtained at the optimal synthesis conditions using 7 ml of A. fumigatus extract and heating time of 20 min. The synthesized AgNPs indicated high antibacterial activity against both Gram-positive and Gram-negative bacteria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Green Processing and Synthesis de Gruyter

Autoclave-assisted green synthesis of silver nanoparticles using A. fumigatus mycelia extract and the evaluation of their physico-chemical properties and antibacterial activity

Loading next page...
 
/lp/degruyter/autoclave-assisted-green-synthesis-of-silver-nanoparticles-using-a-DdQ90BXH17
Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-9550
eISSN
2191-9550
D.O.I.
10.1515/gps-2017-0062
Publisher site
See Article on Publisher Site

Abstract

AbstractSilver nanoparticles (AgNPs) were synthesized using Aspergillus fumigatus (A. fumigatus) mycelia extract via the hydrothermal method. The main reducing and stabilizing groups and components of A. fumigatus extract, such as amine, hydroxyl, amid, protein, enzymes, and cell saccharide compounds, were identified by Fourier transform infrared (FT-IR). Central composition design was used to plan the experiments, and response surface methodology was applied to evaluate of the effects of independent variables, including the amount of the prepared extract (5–7 ml) and heating time (10–20 min) at 121°C and 1.5 bar), on the particle size of the synthesized AgNPs, as manifested in broad emission peak (λmax). More stable and spherical monodispersed AgNPs, with mean particle size, polydispersity index (PDI) value, and maximum ζ potential value of 23 nm, 0.270, and +35.3 mV, respectively, were obtained at the optimal synthesis conditions using 7 ml of A. fumigatus extract and heating time of 20 min. The synthesized AgNPs indicated high antibacterial activity against both Gram-positive and Gram-negative bacteria.

Journal

Green Processing and Synthesisde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off