Another step toward the solution of the real structure of zinkenite

Another step toward the solution of the real structure of zinkenite AbstractThe crystal structure of Cu-bearing zinkenite from Saint-Pons (Alpes Maritimes department, France), having idealized chemical composition Cu0.7Pb9.7Sb21.3S42, has been studied. It has a pronounced hexagonal sub-cell, with unit-cell parameters a=22.1219(11), c=4.3207(3) Å, V=1831.2(2) Å3, space group P63, Z=1. The sub-cell crystal structure was refined to R1=0.072 on the basis of 3905 reflections with Fo>4σ(Fo) and 133 refined parameters. It can be described as formed by one kind of rod, with walls of columns of (Pb/Sb)-centered polyhedra flanking both the rods and the sites located along the 63 screw axis. Minor Cu is hosted in the tetrahedral voids between the rods and the walls of polyhedra. Alternatively, the crystal structure of zinkenite can be described as formed by trigonal rods, delimited by lone electron-pair micelles, and tunnels hosting (Pb/Sb) atoms. The occurrence of weak superstructure reflections points to a triclinic unit cell with parameters a=38.271(2), b=22.1219(13), c=8.6475(5) Å, α=89.931(3), β=90.030(3), γ=89.957(3)°, V=7323.6(7) Å3, space group P1, Z=4. The twin laws making the twin lattice hexagonal have been taken into account and the crystal structure has been solved and refined. Notwithstanding the very low R1 value (R1=0.038 on the basis of 22563 reflections with Fo>4σ(Fo) and 1194 refined parameters), several shortcomings, mainly due to the low diffraction quality of the available crystals, allow only the description of the main structural features of the superstructure of zinkenite, indicating the correctness of the triclinic model hypothesized by previous authors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zeitschrift für Kristallographie - Crystalline Materials de Gruyter

Another step toward the solution of the real structure of zinkenite

Loading next page...
 
/lp/degruyter/another-step-toward-the-solution-of-the-real-structure-of-zinkenite-0kbu7zAVRT
Publisher
De Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2196-7105
eISSN
2196-7105
D.O.I.
10.1515/zkri-2017-2128
Publisher site
See Article on Publisher Site

Abstract

AbstractThe crystal structure of Cu-bearing zinkenite from Saint-Pons (Alpes Maritimes department, France), having idealized chemical composition Cu0.7Pb9.7Sb21.3S42, has been studied. It has a pronounced hexagonal sub-cell, with unit-cell parameters a=22.1219(11), c=4.3207(3) Å, V=1831.2(2) Å3, space group P63, Z=1. The sub-cell crystal structure was refined to R1=0.072 on the basis of 3905 reflections with Fo>4σ(Fo) and 133 refined parameters. It can be described as formed by one kind of rod, with walls of columns of (Pb/Sb)-centered polyhedra flanking both the rods and the sites located along the 63 screw axis. Minor Cu is hosted in the tetrahedral voids between the rods and the walls of polyhedra. Alternatively, the crystal structure of zinkenite can be described as formed by trigonal rods, delimited by lone electron-pair micelles, and tunnels hosting (Pb/Sb) atoms. The occurrence of weak superstructure reflections points to a triclinic unit cell with parameters a=38.271(2), b=22.1219(13), c=8.6475(5) Å, α=89.931(3), β=90.030(3), γ=89.957(3)°, V=7323.6(7) Å3, space group P1, Z=4. The twin laws making the twin lattice hexagonal have been taken into account and the crystal structure has been solved and refined. Notwithstanding the very low R1 value (R1=0.038 on the basis of 22563 reflections with Fo>4σ(Fo) and 1194 refined parameters), several shortcomings, mainly due to the low diffraction quality of the available crystals, allow only the description of the main structural features of the superstructure of zinkenite, indicating the correctness of the triclinic model hypothesized by previous authors.

Journal

Zeitschrift für Kristallographie - Crystalline Materialsde Gruyter

Published: Mar 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off