Add Journal to My Library
Analysis and Geometry in Metric Spaces
, Volume 5 (1): 22 – Sep 2, 2017

Free

22 pages

/lp/degruyter/angles-between-curves-in-metric-measure-spaces-SiFNADhASw

- Publisher
- de Gruyter
- Copyright
- © 2017
- ISSN
- 2299-3274
- eISSN
- 2299-3274
- D.O.I.
- 10.1515/agms-2017-0003
- Publisher site
- See Article on Publisher Site

References[1] L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with infinite measure, Trans. Amer. Math. Soc., 367 (2015), pp. 4661-4701.[2] L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), pp. 289-391.[3] , Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), pp. 1405-1490.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000336014500004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[4] L. Ambrosio and S. Honda, New stability results for sequences of metric measure spaces with uniform Ricci bounds from below. Preprint, arXiv:1605.07908, (2016).[5] L. Ambrosio, A. Mondino, and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces, preprint arXiv:1509.07273, to appear in Mem. Amer. Math. Soc.[6] A. Björn and J. Björn, Nonlinear Potential Theory onMetric Spaces,EMS TractsMath., vol.17 of EuropeanMathematical Society (EMS), Zürich, 2011.[7] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, 2001.[8] M. Biroli and U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (4) 169 (1995), pp 125-181.[9] K. Bacher and K.T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259 (2010), pp. 28-56.[10] F. Cavalletti and A. Mondino, Optimal maps in essentially non-branching spaces, preprint arXiv:1609.00782, to appear in Comm. Cont. Math. DOI: 10.1142/S0219199717500079.[11] J. Cheeger, Di_erentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), pp. 428-517.10.1007/s000390050094[12] J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature bounded below I, J. Di_. Geom., 45, (1997), pp. 406 - 480.[13] , On the structure of spaces with Ricci curvature bounded below II, J. Di_. Geom., 54, (2000), pp. 13-35.[14] , On the structure of spaces with Ricci curvature bounded below III, J. Di_. Geom., 54, (2000), pp. 37 - 74.[15] E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for PDE and Applications, C. Baiocchi and J. L. Lions, eds., Masson, (1993), pp. 81-98.[16] M. Erbar, K. Kuwada, and K. -T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner inequality on metric measure spaces, Invent. Math., 201 (2015), pp. 993-1071.[17] N. Gigli, On the di_erential structure of metric measure spaces and applications, Mem. Amer.Math. Soc., 236, (1113), (2015).[18] N. Gigli and B.-X. Han, The continuity equation on metric measure spaces, Calc. Var. Partial Differential Equations, 53 (2015), pp. 149-177.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352896500006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[19] N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces, J. Math. Pures Appl. 100 (2013), pp. 505-534.[20] N. Gigli, A. Mondino, and G. Savaré, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc., 111, (2015), no. 5, pp. 1071-1129.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000368421900004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[21] N. Gigli, A. Mondino, and T. Rajala, Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below, J. Reine Angew. Math., 705, (2015), pp. 233-244.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000359196100007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[22] N. Gigli, T. Rajala, and K.T. Sturm, Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below, J. Geom. Anal., 26, (2016), no. 4, pp. 2914-2929.10.1007/s12220-015-9654-yhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000382893800018&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[23] S. Honda, A weakly second-order di_erential structure on rectifiable metric measure spaces, Geom. Topol. 18 (2014), no. 2, pp 633-668.10.2140/gt.2014.18.633[24] S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations, 28 (2007), pp. 85-120.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000242610000005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[25] J. Lott and C. Villani, Ricci curvature formetric-measure spaces via optimal transport, Ann. ofMath. (2), 169 (2009), pp. 903 -991.[26] A. Mondino, A new notion of angle between three points in a metric space, J. Reine Angew. Math, 706 (2015), pp. 103-121.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000360857300006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[27] A. Mondino and A. Naber, Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds, preprint arXiv:1405.2222, to appear in Journ. Europ. Math. Soc.[28] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), pp. 101-174.10.1081/PDE-100002243[29] T. Rajala, Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, Vol. 44, Num. 3, (2012), pp. 477-494.[30] K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math., Vol. 196, (2006), 65-131.[31] , On the geometry of metric measure spaces. II, Acta Math., Vol. 196, (2006), 133-177.[32] C. Villani, Optimal transport. Old and new, Grundlehren derMathematischenWissenschaften, 338, Springer-Verlag, Berlin, (2009).

Analysis and Geometry in Metric Spaces – de Gruyter

**Published: ** Sep 2, 2017

Loading...

personal research library

It’s your single place to instantly

**discover** and **read** the research

that matters to you.

Enjoy **affordable access** to

over 18 million articles from more than

**15,000 peer-reviewed journals**.

All for just $49/month

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Read from thousands of the leading scholarly journals from *SpringerNature*, *Elsevier*, *Wiley-Blackwell*, *Oxford University Press* and more.

All the latest content is available, no embargo periods.

## “Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”

Daniel C.

## “Whoa! It’s like Spotify but for academic articles.”

@Phil_Robichaud

## “I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”

@deepthiw

## “My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”

@JoseServera

DeepDyve ## Freelancer | DeepDyve ## Pro | |
---|---|---|

Price | FREE | $49/month |

Save searches from | ||

Create lists to | ||

Export lists, citations | ||

Read DeepDyve articles | Abstract access only | Unlimited access to over |

20 pages / month | ||

PDF Discount | 20% off | |

Read and print from thousands of top scholarly journals.

System error. Please try again!

or

By signing up, you agree to DeepDyve’s Terms of Service and Privacy Policy.

Already have an account? Log in

Bookmark this article. You can see your Bookmarks on your DeepDyve Library.

To save an article, **log in** first, or **sign up** for a DeepDyve account if you don’t already have one.

All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.

ok to continue