An ideal enzyme immobilization carrier: a hierarchically porous cellulose monolith fabricated by phase separation method

An ideal enzyme immobilization carrier: a hierarchically porous cellulose monolith fabricated by... AbstractCellulose monolith with a hierarchically porous morphology was utilized as a novel solid support for enzyme immobilization. After a series of modifications, succinimidyl carbonate (SC)-activated cellulose monolith (SCCL monolith) was obtained and it was employed to immobilize a model enzyme (horseradish peroxidase, HRP) through covalent bonding. The HRP immobilization capacity on SCCL monolith was calculated as 21.0 mg/g. The thermal stability measurement illustrated that the immobilized HRP exhibited a largely improved thermal resistance compared to its free counterpart. The reusability of the immobilized HRP was investigated, and it could be reused at least 10 cycles without significant activity loss. Therefore, cellulose monolith is found to be an ideal solid support for enzyme immobilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Pure and Applied Chemistry de Gruyter

An ideal enzyme immobilization carrier: a hierarchically porous cellulose monolith fabricated by phase separation method

Loading next page...
 
/lp/degruyter/an-ideal-enzyme-immobilization-carrier-a-hierarchically-porous-pzMvkq7Fx3
Publisher
De Gruyter
Copyright
©2018 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
ISSN
0033-4545
eISSN
1365-3075
D.O.I.
10.1515/pac-2017-0710
Publisher site
See Article on Publisher Site

Abstract

AbstractCellulose monolith with a hierarchically porous morphology was utilized as a novel solid support for enzyme immobilization. After a series of modifications, succinimidyl carbonate (SC)-activated cellulose monolith (SCCL monolith) was obtained and it was employed to immobilize a model enzyme (horseradish peroxidase, HRP) through covalent bonding. The HRP immobilization capacity on SCCL monolith was calculated as 21.0 mg/g. The thermal stability measurement illustrated that the immobilized HRP exhibited a largely improved thermal resistance compared to its free counterpart. The reusability of the immobilized HRP was investigated, and it could be reused at least 10 cycles without significant activity loss. Therefore, cellulose monolith is found to be an ideal solid support for enzyme immobilization.

Journal

Pure and Applied Chemistryde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off