Add Journal to My Library
Analysis and Geometry in Metric Spaces
, Volume 6 (1): 31 – Feb 16, 2018

Free

31 pages

/lp/degruyter/an-analog-of-the-neumann-problem-for-the-1-laplace-equation-in-the-10gkCJQg0q

- Publisher
- De Gruyter Open
- Copyright
- © 2018
- ISSN
- 2299-3274
- eISSN
- 2299-3274
- D.O.I.
- 10.1515/agms-2018-0001
- Publisher site
- See Article on Publisher Site

References[1] L. Ambrosio, Fine properties of sets of finite perimeter in doublingmetric measure spaces, Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), no. 2-3, 111-128.[2] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems., Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.[3] L. Ambrosio, M. Miranda, Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1-45, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004.[4] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. xii+403 pp.[5] A. Björn and J. Björn, Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology, Rev. Mat. Iberoam. 31 (2015), no. 1, 161-214.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352568500007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[6] A. Björn, J. Björn, and J. Malý, Quasiopen and p-path open sets, and characterizations of quasicontinuity, Potential Anal. 46 (2017), no. 1, 181-199. doi: 10.1007/s11118-016-9580-z.10.1007/s11118-016-9580-z[7] A. Björn, J. Björn, and N. Shanmugalingam, Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces, Houston J. Math. 34 (2008), no. 4, 1197-1211.[8] A. Björn, J. Björn, and N. Shanmugalingam, The Dirichlet problemfor p-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173-203.[9] A. Björn, J. Björn, and N. Shanmugalingam, The Dirichlet problemfor p-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities, J. Differential Equations 259 (2015), no. 7, 3078-3114.[10] E. Durand-Cartagena, and A. Lemenant, Some stability results under domain variation for Neumann problems in metric spaces, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 2, 537-563.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000282496400012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[11] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in AdvancedMathematics series, CRC Press, Boca Raton, 1992.[12] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp.[13] B. Fuglede, The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier 21 (1971), no. 1, 123-169.[14] E. Giusti,Minimal surfaces and functions of bounded variation, Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp.[15] P. Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173-218. Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.[16] H. Hakkarainen and J. Kinnunen, The BV-capacity in metric spaces, Manuscripta Math. 132 (2010), no. 1-2, 51-73.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000276432900003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[17] H. Hakkarainen, J. Kinnunen, P. Lahti, and P. Lehtelä, Relaxation and integral representation for functionals of linear growth on metric measures spaces, Anal. Geom. Metr. Spaces 4 (2016), 288-313.[18] H. Hakkarainen, R. Korte, P. Lahti, and N. Shanmugalingam, Stability and continuity of functions of least gradient, Anal. Geom. Metr. Spaces 3 (2015), 123-139.[19] H. Hakkarainen and N. Shanmugalingam, Comparisons of relative BV-capacities and Sobolev capacity in metric spaces, Nonlinear Anal. 74 (2011), no. 16, 5525-5543.[20] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1-61.[21] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. Tyson, Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Mathematical Monographs, 27. Cambridge University Press, Cambridge, 2015. xii+434 pp.[22] J. Kinnunen, R. Korte, A. Lorent, and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces, J. Geom. Anal. 23 (2013), no. 4, 1607-1640.10.1007/s12220-012-9299-zhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000325065700001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[23] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, A characterization of Newtonian functions with zero boundary values, Calc. Var. Partial Differential Equations 43 (2012), no. 3-4, 507-528.[24] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J. 57 (2008), no. 1, 401-430.[25] R. Korte, P. Lahti, X. Li, and N. Shanmugalingam, Notions of Dirichlet problemfor functions of least gradient inmetricmeasure spaces, preprint 2016. http://cvgmt.sns.it/paper/3295/[26] P. Lahti, Extensions and traces of functions of bounded variation on metric spaces, J. Math. Anal. Appl. 423 (2015), no. 1, 521-537.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000349706000031&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3[27] P. Lahti, Quasiopen sets, bounded variation and lower semicontinuity in metric spaces, preprint 2017. arXiv:1703.04675[28] P. Lahti, Strong approximation of sets of finite perimeter in metric spaces, to appear in manuscripta mathematica. doi: 10.1007/s00229-017-0948-110.1007/s00229-017-0948-1[29] P. Lahti, L. Malý, N. Shanmugalingam, and G. Speight, Domains in metric measure spaces with boundary of positive mean curvature, and the Dirichlet problem for functions of least gradient, preprint 2017. http://cvgmt.sns.it/paper/3500/[30] P. Lahti and N. Shanmugalingam, Fine properties and a notion of quasicontinuity for BV functions on metric spaces, J. Math. Pures Appl. (9) 107 (2017), no. 2, 150-182.[31] P. Lahti and N. Shanmugalingam, Trace theorems for functions of bounded variation in metric spaces, preprint 2015. arXiv:1507.07006[32] L. Malý and N. Shanmugalingam, Neumann problem for p-Laplace equation in metric spaces using a variational approach: existence, boundedness, and boundary regularity, preprint 2016. arXiv:1609.06808[33] L. Malý, N. Shanmugalingam, and M. Snipes, Trace and extension theorems for functions of bounded variation, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. doi: 10.2422/2036-2145.201511_00710.2422/2036-2145.201511_007[34] N. Marola, M. Miranda Jr., and N. Shanmugalingam, Boundary measures, generalized Gauss-Green formulas and the mean value property in metric measure spaces Revista Mat. Iberoamericana 31 (2015), no. 2, 497-530.[35] J. M. Mazón, J. D. Rossi, and S. Segura de León, Functions of least gradient and 1-harmonic functions. Indiana Univ. Math. J. 63 (2014), no. 4, 1067-1084.[36] J. M. Mazón, J. D. Rossi, and S. Segura de León, The 1-Laplacian elliptic equation with inhomogeneous Robin boundary conditions, Differential and Integral Equations 28 (2015) no. 5-6, 401-430.[37] A. Mercaldo, J. D. Rossi, S. Segura de León, and C. Trombetti, Behaviour of p-Laplacian problems with Neumann boundary conditions when p goes to 1, Commun. Pure Appl. Anal. 12 (2013), 253-267.[38] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J.Math. Pures Appl. (9) 82 (2003), no. 8, 975-1004.[39] A. Moradifam, Least gradient problemswith Neumann boundary condition, J. Differential Equations 263 (2017), no. 11, 7900-7918.ams inequality on metric measure spaces, Rev. Mat. Iberoam. 25 (2009), no. 2, 533-558.[40] T. Mäkäläinen, Adams inequality on metric measure spaces, Rev. Mat. Iberoam. 25 (2009), no. 2, 533-558.10.4171/RMI/575[41] C. Scheven and T. Schmidt, On the dual formulation of obstacle problems for the total variation and the area functional, to appear in Ann. Inst. Henri Poincaré, Anal. Non Linéaire. http://cvgmt.sns.it/paper/3320/[42] N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), no. 3, 1021-1050.[43] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16(2) (2000), 243-279.[44] P. Sternberg, G. Williams, and W. Ziemer, Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35-60.[45] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989.[46] W. Ziemer and K. Zumbrun, The obstacle problemfor functions of least gradient,Math. Bohem. 124 (1999), no. 2-3, 193-219.

Analysis and Geometry in Metric Spaces – de Gruyter

**Published: ** Feb 16, 2018

Loading...

personal research library

It’s your single place to instantly

**discover** and **read** the research

that matters to you.

Enjoy **affordable access** to

over 12 million articles from more than

**10,000 peer-reviewed journals**.

All for just $49/month

Read as many articles as you need. **Full articles** with original layout, charts and figures. Read **online**, from anywhere.

Keep up with your field with **Personalized Recommendations** and **Follow Journals** to get automatic updates.

It’s easy to organize your research with our built-in **tools**.

Read from thousands of the leading scholarly journals from *SpringerNature*, *Elsevier*, *Wiley-Blackwell*, *Oxford University Press* and more.

All the latest content is available, no embargo periods.

## “Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”

Daniel C.

## “Whoa! It’s like Spotify but for academic articles.”

@Phil_Robichaud

## “I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”

@deepthiw

## “My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”

@JoseServera

## DeepDyve Freelancer | ## DeepDyve Pro | |

Price | FREE | $49/month $360/year |

Save searches from Google Scholar, PubMed | ||

Create lists to organize your research | ||

Export lists, citations | ||

Read DeepDyve articles | Abstract access only | Unlimited access to over 18 million full-text articles |

Print | 20 pages/month | |

PDF Discount | 20% off | |

Read and print from thousands of top scholarly journals.

System error. Please try again!

or

By signing up, you agree to DeepDyve’s Terms of Service and Privacy Policy.

Already have an account? Log in

Bookmark this article. You can see your Bookmarks on your DeepDyve Library.

To save an article, **log in** first, or **sign up** for a DeepDyve account if you don’t already have one.