Al diffusion in quartz

Al diffusion in quartz AbstractAluminum diffusion in synthetic and natural quartz was characterized under anhydrous conditions at 1 atm and temperatures from 700 to 950 °C. Experiments were carried out on polished quartz slabs immersed in fine-grained powder of spodumene or K-feldspar. Diffusion profiles were measured using Nuclear Reaction Analysis (NRA) and yield the following Arrhenius parameters: DAl = 2.48 × 10–11 exp(−199 ± 10 kJ/mol/RT)m2s–1, where log D0 = –10.6 ± 0.55.The diffusivity of Al through the quartz lattice is sufficiently slow (e.g., akin to Ti) that diffusive modification or loss of Al in magmatic or metamorphic quartz is unlikely in all but the most extreme temperature-time conditions seen in natural systems. In other words, core to rim Al zonation produced during crystal fractionation from a granitoid, or metamorphic overgrowths on quartz during metamorphism, are likely to be preserved at the crystal scale but may show some diffusive relaxation at sub-micrometers to tens of micrometers in scale. The similar diffusivities of Al and Ti also suggest that diffusive modification of Al/Ti is highly unlikely to occur at all but the smallest length scales (e.g., sub-micrometers to tens of micrometers). These observations indicate that the two most abundant impurities in quartz (Al and Ti) are likely to record primary information regarding the crystallization conditions in most geological environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Mineralogist de Gruyter

Loading next page...
 
/lp/degruyter/al-diffusion-in-quartz-nRTGyIbVKk
Publisher
Mineralogical Society of America
Copyright
© 2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0003-004X
eISSN
1945-3027
D.O.I.
10.2138/am-2018-5613
Publisher site
See Article on Publisher Site

Abstract

AbstractAluminum diffusion in synthetic and natural quartz was characterized under anhydrous conditions at 1 atm and temperatures from 700 to 950 °C. Experiments were carried out on polished quartz slabs immersed in fine-grained powder of spodumene or K-feldspar. Diffusion profiles were measured using Nuclear Reaction Analysis (NRA) and yield the following Arrhenius parameters: DAl = 2.48 × 10–11 exp(−199 ± 10 kJ/mol/RT)m2s–1, where log D0 = –10.6 ± 0.55.The diffusivity of Al through the quartz lattice is sufficiently slow (e.g., akin to Ti) that diffusive modification or loss of Al in magmatic or metamorphic quartz is unlikely in all but the most extreme temperature-time conditions seen in natural systems. In other words, core to rim Al zonation produced during crystal fractionation from a granitoid, or metamorphic overgrowths on quartz during metamorphism, are likely to be preserved at the crystal scale but may show some diffusive relaxation at sub-micrometers to tens of micrometers in scale. The similar diffusivities of Al and Ti also suggest that diffusive modification of Al/Ti is highly unlikely to occur at all but the smallest length scales (e.g., sub-micrometers to tens of micrometers). These observations indicate that the two most abundant impurities in quartz (Al and Ti) are likely to record primary information regarding the crystallization conditions in most geological environments.

Journal

American Mineralogistde Gruyter

Published: Jun 26, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off