Activation of TRPM8 cold receptor triggers allodynia-like behavior in spinally injured rats

Activation of TRPM8 cold receptor triggers allodynia-like behavior in spinally injured rats AbstractAimsPain in response to innocuous cold stimulation (cold allodynia) is a common symptom in patients with neuropathic pain. Cold allodynia is difficult to treat and its mechanisms are poorly understood. Several transient receptor potential (TRP) channels have been shown to be the molecular sensors for cold stimulation in a temperature-dependent manner, but the contribution of various TRP channels in mediating cold allodynia in neuropathic pain is unclear. We have previously shown that spinally injured rats developed neuropathic pain-like behaviors, including marked cold allodynia. We now assessed the role of TRP channels in mediating cold allodynia in rats after ischemic spinal cord injury.MethodsMethods: Spinal cord injury was produced using a photochemical method. The mechanical allodynia was assessed by examining the vocalization thresholds to graded mechanical touch/pressure applied with von Frey hairs. Temperature controlled cold stimulation was produced by a Peltier thermode (active surface 25 mm × 50 mm) connected to a MSA Thermal Simulator (Somedic, Sweden) with baseline temperature of 32 °C. The rate of temperature change was 0.5 °C/s. The temperature required to elicit cold allodynia was examined. The responses of the rats to topical application of icilin or menthol, agonists of transient receptor potential melastain 8 (TRPM8), were also studied.ResultsNormal rats did not exhibit nociceptive responses to cooling stimulation to the trunk and back area (minimal temperature +6°C) and they also did not react aversively to topical application of icilin or menthol. After spinal cord injury, the rats developed mechanical allodynia at the trunk and back just rostral to the dermatome of the injured spinal segments. In the same area, rats exhibited significant nociceptive responses to cooling from day 1 after injury, lasting for at least 70 days which is the longest time of observation. For the first two weeks after injury, the majority of spinally injured rats had a nociceptive response to cooling above 17°C. At day 70, about 50% of rats responded to cooling above 17 °C. Topical application of 400 μM icilin or 4mM menthol also elicited pain-like responses in spinally injured rats and these two cold mimetics also significantly exacerbated existing mechanical allodynia.ConclusionOur results showed that activation of the TRPM8 channel by menthol or icilin triggers allodynia in spinally injured rats and increases, rather than decreases, mechanical allodynia. TRPM8 channels which respond to cooling above 17 ° C may be involved at least in part in mediating cold allodynia in the rat model of neuropathic spinal cord injury pain.ImplicationsThe work introduced a method of quantitative testings of responses of rats to cold stimulation and may contribute to the understanding of mechanisms of cold allodynia after injury to the nervous system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scandinavian Journal of Pain de Gruyter

Activation of TRPM8 cold receptor triggers allodynia-like behavior in spinally injured rats

Loading next page...
 
/lp/degruyter/activation-of-trpm8-cold-receptor-triggers-allodynia-like-behavior-in-IOxnA4KA5V
Publisher
De Gruyter
Copyright
© 2012 Scandinavian Association for the Study of Pain
ISSN
1877-8860
eISSN
1877-8879
D.O.I.
10.1016/j.sjpain.2012.09.007
Publisher site
See Article on Publisher Site

Abstract

AbstractAimsPain in response to innocuous cold stimulation (cold allodynia) is a common symptom in patients with neuropathic pain. Cold allodynia is difficult to treat and its mechanisms are poorly understood. Several transient receptor potential (TRP) channels have been shown to be the molecular sensors for cold stimulation in a temperature-dependent manner, but the contribution of various TRP channels in mediating cold allodynia in neuropathic pain is unclear. We have previously shown that spinally injured rats developed neuropathic pain-like behaviors, including marked cold allodynia. We now assessed the role of TRP channels in mediating cold allodynia in rats after ischemic spinal cord injury.MethodsMethods: Spinal cord injury was produced using a photochemical method. The mechanical allodynia was assessed by examining the vocalization thresholds to graded mechanical touch/pressure applied with von Frey hairs. Temperature controlled cold stimulation was produced by a Peltier thermode (active surface 25 mm × 50 mm) connected to a MSA Thermal Simulator (Somedic, Sweden) with baseline temperature of 32 °C. The rate of temperature change was 0.5 °C/s. The temperature required to elicit cold allodynia was examined. The responses of the rats to topical application of icilin or menthol, agonists of transient receptor potential melastain 8 (TRPM8), were also studied.ResultsNormal rats did not exhibit nociceptive responses to cooling stimulation to the trunk and back area (minimal temperature +6°C) and they also did not react aversively to topical application of icilin or menthol. After spinal cord injury, the rats developed mechanical allodynia at the trunk and back just rostral to the dermatome of the injured spinal segments. In the same area, rats exhibited significant nociceptive responses to cooling from day 1 after injury, lasting for at least 70 days which is the longest time of observation. For the first two weeks after injury, the majority of spinally injured rats had a nociceptive response to cooling above 17°C. At day 70, about 50% of rats responded to cooling above 17 °C. Topical application of 400 μM icilin or 4mM menthol also elicited pain-like responses in spinally injured rats and these two cold mimetics also significantly exacerbated existing mechanical allodynia.ConclusionOur results showed that activation of the TRPM8 channel by menthol or icilin triggers allodynia in spinally injured rats and increases, rather than decreases, mechanical allodynia. TRPM8 channels which respond to cooling above 17 ° C may be involved at least in part in mediating cold allodynia in the rat model of neuropathic spinal cord injury pain.ImplicationsThe work introduced a method of quantitative testings of responses of rats to cold stimulation and may contribute to the understanding of mechanisms of cold allodynia after injury to the nervous system.

Journal

Scandinavian Journal of Painde Gruyter

Published: Dec 29, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial