Aberrant DNA methylation involved in obese women with systemic insulin resistance

Aberrant DNA methylation involved in obese women with systemic insulin resistance AbstractBackgroundEpigenetics has been recognized as a significant regulator in many diseases. White adipose tissue (WAT) epigenetic dysregulation is associated with systemic insulin resistance (IR). The aim of this study was to survey the differential methylation of genes in obese women with systemic insulin resistance by DNA methylation microarray.MethodsThe genome-wide methylation profile of systemic insulin resistant obese women was obtained from Gene Expression Omnibus database. After data preprocessing, differing methylation patterns between insulin resistant and sensitive obese women were identified by Student’s t-test and methylation value differences. Network analysis was then performed to reveal co-regulated genes of differentially methylated genes. Functional analysis was also implemented to reveal the underlying biological processes related to systemic insulin resistance in obese women.ResultsRelative to insulin sensitive obese women, we initially screened 10,874 differentially methylated CpGs, including 7402 hyper-methylated sites and 6073 hypo-methylated CpGs. Our analysis identified 4 significantly differentially methylated genes, including SMYD3, UST, BCL11A, and BAI3. Network and functional analyses found that these differentially methylated genes were mainly involved in chondroitin and dermatan sulfate biosynthetic processes.ConclusionBased on our study, we propose several epigenetic biomarkers that may be related to obesity-associated insulin resistance. Our results provide new insights into the epigenetic regulation of disease etiology and also identify novel targets for insulin resistance treatment in obese women. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Life Sciences de Gruyter

Aberrant DNA methylation involved in obese women with systemic insulin resistance

Loading next page...
 
/lp/degruyter/aberrant-dna-methylation-involved-in-obese-women-with-systemic-insulin-WZiLDF39CT
Publisher
De Gruyter Open
Copyright
© 2018 Shao-Jun Zhang et al.
ISSN
2391-5412
eISSN
2391-5412
D.O.I.
10.1515/biol-2018-0024
Publisher site
See Article on Publisher Site

Abstract

AbstractBackgroundEpigenetics has been recognized as a significant regulator in many diseases. White adipose tissue (WAT) epigenetic dysregulation is associated with systemic insulin resistance (IR). The aim of this study was to survey the differential methylation of genes in obese women with systemic insulin resistance by DNA methylation microarray.MethodsThe genome-wide methylation profile of systemic insulin resistant obese women was obtained from Gene Expression Omnibus database. After data preprocessing, differing methylation patterns between insulin resistant and sensitive obese women were identified by Student’s t-test and methylation value differences. Network analysis was then performed to reveal co-regulated genes of differentially methylated genes. Functional analysis was also implemented to reveal the underlying biological processes related to systemic insulin resistance in obese women.ResultsRelative to insulin sensitive obese women, we initially screened 10,874 differentially methylated CpGs, including 7402 hyper-methylated sites and 6073 hypo-methylated CpGs. Our analysis identified 4 significantly differentially methylated genes, including SMYD3, UST, BCL11A, and BAI3. Network and functional analyses found that these differentially methylated genes were mainly involved in chondroitin and dermatan sulfate biosynthetic processes.ConclusionBased on our study, we propose several epigenetic biomarkers that may be related to obesity-associated insulin resistance. Our results provide new insights into the epigenetic regulation of disease etiology and also identify novel targets for insulin resistance treatment in obese women.

Journal

Open Life Sciencesde Gruyter

Published: Jun 2, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off