A Simplistic Preliminary Assessment of Ginstling-Brounstein Model for Solid Spherical Particles in the Context of a Diffusion-Controlled Synthesis

A Simplistic Preliminary Assessment of Ginstling-Brounstein Model for Solid Spherical Particles... AbstractWet precipitation (WP) is a diffusion-controlled synthesis method, which is often used for synthesizing such compounds as hydroxyapatite (HAp). Since the process is limited by diffusion, the choice of a diffusion model becomes a critical aspect. In this simplistic assessment for a preliminary evaluation of the diffusion model applicability, the Ginstling-Brounstein (GB) equation is chosen and analyzed for the case of spherical particles. The nominal kinetic constant K is a parameter in GB model which describes diffusion and is related to the effective molecular diffusivity. When the value of K is known, it becomes possible to predict the required time to achieve desired conversion and design the synthesis accordingly. The GB model is assessed mathematically using simulations, a parametric study and Yates analysis (2n factorial design). Parameters chosen for a preliminary study are in the range of characteristic values for a laboratory-scale WP synthesis of HAp and are thus representative for the application of the model to practice. It should be noted that the analysis is simplistic and is meant to provide only preliminary information for future research, requiring experimental validation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Open Chemistry de Gruyter

A Simplistic Preliminary Assessment of Ginstling-Brounstein Model for Solid Spherical Particles in the Context of a Diffusion-Controlled Synthesis

Loading next page...
 
/lp/degruyter/a-simplistic-preliminary-assessment-of-ginstling-brounstein-model-for-QCZ6mNH129
Publisher
de Gruyter
Copyright
© 2018 Andrey E.Krauklis, Ilo Dreyer, published by De Gruyter
ISSN
2391-5420
eISSN
2391-5420
D.O.I.
10.1515/chem-2018-0011
Publisher site
See Article on Publisher Site

Abstract

AbstractWet precipitation (WP) is a diffusion-controlled synthesis method, which is often used for synthesizing such compounds as hydroxyapatite (HAp). Since the process is limited by diffusion, the choice of a diffusion model becomes a critical aspect. In this simplistic assessment for a preliminary evaluation of the diffusion model applicability, the Ginstling-Brounstein (GB) equation is chosen and analyzed for the case of spherical particles. The nominal kinetic constant K is a parameter in GB model which describes diffusion and is related to the effective molecular diffusivity. When the value of K is known, it becomes possible to predict the required time to achieve desired conversion and design the synthesis accordingly. The GB model is assessed mathematically using simulations, a parametric study and Yates analysis (2n factorial design). Parameters chosen for a preliminary study are in the range of characteristic values for a laboratory-scale WP synthesis of HAp and are thus representative for the application of the model to practice. It should be noted that the analysis is simplistic and is meant to provide only preliminary information for future research, requiring experimental validation.

Journal

Open Chemistryde Gruyter

Published: Feb 24, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off