A rapid UPLC-MS/MS assay for the simultaneous measurement of fluconazole, voriconazole, posaconazole, itraconazole, and hydroxyitraconazole concentrations in serum

A rapid UPLC-MS/MS assay for the simultaneous measurement of fluconazole, voriconazole,... AbstractBackground:Triazole antifungals are essential to the treatment and prophylaxis of fungal infections. Significant pharmacokinetic variability combined with a clinical need for faster turnaround times has increased demand for in-house therapeutic drug monitoring of these drugs, which is best performed using mass spectrometry-based platforms. However, technical and logistical obstacles to implementing these platforms in hospital laboratories have limited their widespread utilization. Here, we present the development and validation of a fast and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to measure fluconazole, voriconazole, posaconazole, itraconazole, and hydroxyitraconazole in human serum suitable for incorporation into a hospital clinical laboratory.Methods:Serum samples (20 µL) were prepared using protein precipitation in the presence of deuterated internal standards. Chromatographic separation was accomplished using reversed phase UPLC and analysis was performed using positive-mode electrospray ionization and collision-induced dissociation MS.Results:Total analytical run time was 3 min. All analytes demonstrated linearity (r2>0.998) from 0.1 to 10 µg/mL (1–100 µg/mL for fluconazole), acceptable accuracy and precision (%DEV<15% and %CV<15% at all levels tested), suitable stability under relevant storage conditions, and correlated well with reference laboratory results.Conclusions:A simple and rapid UPLC-MS/MS method for monitoring multiple triazole antifungals was developed with a focus on the needs of hospital laboratories. The assay is suitable for clinical utilization and management of patients on these medications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

A rapid UPLC-MS/MS assay for the simultaneous measurement of fluconazole, voriconazole, posaconazole, itraconazole, and hydroxyitraconazole concentrations in serum

Loading next page...
 
/lp/degruyter/a-rapid-uplc-ms-ms-assay-for-the-simultaneous-measurement-of-GIyA0zFe3A
Publisher
De Gruyter
Copyright
©2017 Walter de Gruyter GmbH, Berlin/Boston
ISSN
1437-4331
eISSN
1437-4331
D.O.I.
10.1515/cclm-2016-0418
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:Triazole antifungals are essential to the treatment and prophylaxis of fungal infections. Significant pharmacokinetic variability combined with a clinical need for faster turnaround times has increased demand for in-house therapeutic drug monitoring of these drugs, which is best performed using mass spectrometry-based platforms. However, technical and logistical obstacles to implementing these platforms in hospital laboratories have limited their widespread utilization. Here, we present the development and validation of a fast and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to measure fluconazole, voriconazole, posaconazole, itraconazole, and hydroxyitraconazole in human serum suitable for incorporation into a hospital clinical laboratory.Methods:Serum samples (20 µL) were prepared using protein precipitation in the presence of deuterated internal standards. Chromatographic separation was accomplished using reversed phase UPLC and analysis was performed using positive-mode electrospray ionization and collision-induced dissociation MS.Results:Total analytical run time was 3 min. All analytes demonstrated linearity (r2>0.998) from 0.1 to 10 µg/mL (1–100 µg/mL for fluconazole), acceptable accuracy and precision (%DEV<15% and %CV<15% at all levels tested), suitable stability under relevant storage conditions, and correlated well with reference laboratory results.Conclusions:A simple and rapid UPLC-MS/MS method for monitoring multiple triazole antifungals was developed with a focus on the needs of hospital laboratories. The assay is suitable for clinical utilization and management of patients on these medications.

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Jun 1, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off