A new luminescent host material K3GdB6O12: synthesis, crystal structure and luminescent properties activated by Sm3+

A new luminescent host material K3GdB6O12: synthesis, crystal structure and luminescent... AbstractA new borate compound K3GdB6O12 has been prepared using a high temperature flux method and structurally characterized by single crystal X-ray diffraction analysis. The structure can be described as a three-dimensional framework that is composed of [B5O10]5− groups, K+ ions and Gd3+ ions. In this structure, one crystallographic distinct site is mixed occupied by K and Gd atoms at the molar ratio of 1:1. Furthermore, Sm3+ ion was used as the activator to test primary of K3GdB6O12 to be used as a luminescent host matrix. A series of phosphors K3Gd1−xB6O12:xSm3+ were synthesized by conventional solid-state reaction. The photoluminescence properties and concentration quenching of the prepared phosphors were investigated. The results show that K3Gd1−xB6O12:xSm3+ can be efficiently excited by near-UV light. K3Gd1−xB6O12:xSm3+ might be a promising candidate for visual display and solid-state lighting as an orange emission phosphor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zeitschrift für Kristallographie - Crystalline Materials de Gruyter

A new luminescent host material K3GdB6O12: synthesis, crystal structure and luminescent properties activated by Sm3+

Loading next page...
 
/lp/degruyter/a-new-luminescent-host-material-k3gdb6o12-synthesis-crystal-structure-E0s0UKAhHz
Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2196-7105
eISSN
2196-7105
D.O.I.
10.1515/zkri-2017-2101
Publisher site
See Article on Publisher Site

Abstract

AbstractA new borate compound K3GdB6O12 has been prepared using a high temperature flux method and structurally characterized by single crystal X-ray diffraction analysis. The structure can be described as a three-dimensional framework that is composed of [B5O10]5− groups, K+ ions and Gd3+ ions. In this structure, one crystallographic distinct site is mixed occupied by K and Gd atoms at the molar ratio of 1:1. Furthermore, Sm3+ ion was used as the activator to test primary of K3GdB6O12 to be used as a luminescent host matrix. A series of phosphors K3Gd1−xB6O12:xSm3+ were synthesized by conventional solid-state reaction. The photoluminescence properties and concentration quenching of the prepared phosphors were investigated. The results show that K3Gd1−xB6O12:xSm3+ can be efficiently excited by near-UV light. K3Gd1−xB6O12:xSm3+ might be a promising candidate for visual display and solid-state lighting as an orange emission phosphor.

Journal

Zeitschrift für Kristallographie - Crystalline Materialsde Gruyter

Published: Jun 27, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off