Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling

Weak first- and second-order numerical schemes for stochastic differential equations appearing in... Weak first- and second-order numerical schemes are developed to integrate the stochastic differential equations that arise in mean-field - pdf methods (Lagrangian stochastic approach) for modeling polydispersed turbulent two-phase flows. These equations present several challenges, the foremost being that the problem is characterized by the presence of different time scales that can lead to stiff equations, when the smallest time-scale is significantly less than the time-step of the simulation. The numerical issues have been detailed by Minier Monte Carlo Meth. and Appl. 7 295-310, (2000) and the present paper proposes numerical schemes that satisfy these constraints. This point is really crucial for physical and engineering applications, where various limit cases can be present at the same time in different parts of the domain or at different times. In order to build up the algorithm, the analytical solutions to the equations are first carried out when the coefficients are constant. By freezing the coefficients in the analytical solutions, first and second order unconditionally stable weak schemes are developed. A prediction/ correction method, which is shown to be consistent for the present stochastic model, is used to devise the second-order scheme. A complete numerical investigation is carried out to validate the schemes, having included also a comprehensive study of the different error sources. The final method is demonstrated to have the required stability, accuracy and efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monte Carlo Methods and Applications de Gruyter

Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling

Loading next page...
 
/lp/de-gruyter/weak-first-and-second-order-numerical-schemes-for-stochastic-JdTD3Jt7jx
Publisher
de Gruyter
Copyright
Copyright 2003, Walter de Gruyter
ISSN
0929-9629
eISSN
1569-3961
DOI
10.1515/156939603322663312
Publisher site
See Article on Publisher Site

Abstract

Weak first- and second-order numerical schemes are developed to integrate the stochastic differential equations that arise in mean-field - pdf methods (Lagrangian stochastic approach) for modeling polydispersed turbulent two-phase flows. These equations present several challenges, the foremost being that the problem is characterized by the presence of different time scales that can lead to stiff equations, when the smallest time-scale is significantly less than the time-step of the simulation. The numerical issues have been detailed by Minier Monte Carlo Meth. and Appl. 7 295-310, (2000) and the present paper proposes numerical schemes that satisfy these constraints. This point is really crucial for physical and engineering applications, where various limit cases can be present at the same time in different parts of the domain or at different times. In order to build up the algorithm, the analytical solutions to the equations are first carried out when the coefficients are constant. By freezing the coefficients in the analytical solutions, first and second order unconditionally stable weak schemes are developed. A prediction/ correction method, which is shown to be consistent for the present stochastic model, is used to devise the second-order scheme. A complete numerical investigation is carried out to validate the schemes, having included also a comprehensive study of the different error sources. The final method is demonstrated to have the required stability, accuracy and efficiency.

Journal

Monte Carlo Methods and Applicationsde Gruyter

Published: Apr 1, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off