Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Verification of propofol sulfate as a further human propofol metabolite using LC-ESI-QQQ-MS and LC-ESI-QTOF-MS analysis

Verification of propofol sulfate as a further human propofol metabolite using LC-ESI-QQQ-MS and... Abstract Background: Propofol (2,6-diisopropylphenol) is a water-insoluble, intravenous anesthetic that is widely used for the induction and maintenance of anesthesia as well as for endoscopic and pediatric sedation. After admission, propofol undergoes extensive hepatic and extrahepatic metabolism, including direct conjugation to propofol glucuronide and hydroxylation to 2,6-diisopropyl-1,4-quinol. The latter substance subsequently undergoes phase II metabolism, resulting in the formation of further metabolites (1quinolglucuronide, 4quinolglucuronide and 4quinol-sulfate). Further minor phase I propofol metabolites (2-(ω-propanol)-6-isopropylphenol and 2-(ω-propanol)-6-isopropyl-1,4-quinol)) are also described. Due to its chemical structure with the phenolic hydroxyl group, propofol is also an appropriate substrate for sulfation by sulfotransferases. Methods: The existence of propofol sulfate was investigated by liquid chromatography electrospray ionization triple quadrupole mass spectrometry (LCESIQQQ-MS) and liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LCESI-QTOF-MS). A propofol sulfate reference standard was used for identification and method development, yielding a precursor at m/z 257 (deprotonated propofol sulfate) and product ions at m/z 177 (deprotonated propofol) and m/z 80 ((SO 3 ) − ). Results: Propofol sulfate – a further phase II metabolite of propofol – was verified in urine samples by LC-ESI-QQQ-MS and LC-ESI-QTOF-MS. Analyses of urine samples from five volunteers collected before and after propofol-induced sedation verified the presence of propofol sulfate in urine following propofol administration, whereas ascertained concentrations of this metabolite were significantly lower compared with detected propofol glucuronide concentrations. Conclusions: The existence of propofol sulfate as a further phase II propofol metabolite in humans could be verified by two different detection techniques (LCESIQQQ-MS and LC-ESI-QTOFMS) on the basis of a propofol sulfate reference standard. Evaluation of the quantitative analyses of propofol sulfate imply that propofol sulfate represents a minor metabolite of propofol and is only slightly involved in human propofol clearance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Drug Metabolism and Drug Interactions de Gruyter

Verification of propofol sulfate as a further human propofol metabolite using LC-ESI-QQQ-MS and LC-ESI-QTOF-MS analysis

Loading next page...
 
/lp/de-gruyter/verification-of-propofol-sulfate-as-a-further-human-propofol-XkikAqsveM

References (18)

Publisher
de Gruyter
Copyright
Copyright © 2017 by the
ISSN
2363-8907
eISSN
2363-8915
DOI
10.1515/dmpt-2017-0003
pmid
28259866
Publisher site
See Article on Publisher Site

Abstract

Abstract Background: Propofol (2,6-diisopropylphenol) is a water-insoluble, intravenous anesthetic that is widely used for the induction and maintenance of anesthesia as well as for endoscopic and pediatric sedation. After admission, propofol undergoes extensive hepatic and extrahepatic metabolism, including direct conjugation to propofol glucuronide and hydroxylation to 2,6-diisopropyl-1,4-quinol. The latter substance subsequently undergoes phase II metabolism, resulting in the formation of further metabolites (1quinolglucuronide, 4quinolglucuronide and 4quinol-sulfate). Further minor phase I propofol metabolites (2-(ω-propanol)-6-isopropylphenol and 2-(ω-propanol)-6-isopropyl-1,4-quinol)) are also described. Due to its chemical structure with the phenolic hydroxyl group, propofol is also an appropriate substrate for sulfation by sulfotransferases. Methods: The existence of propofol sulfate was investigated by liquid chromatography electrospray ionization triple quadrupole mass spectrometry (LCESIQQQ-MS) and liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LCESI-QTOF-MS). A propofol sulfate reference standard was used for identification and method development, yielding a precursor at m/z 257 (deprotonated propofol sulfate) and product ions at m/z 177 (deprotonated propofol) and m/z 80 ((SO 3 ) − ). Results: Propofol sulfate – a further phase II metabolite of propofol – was verified in urine samples by LC-ESI-QQQ-MS and LC-ESI-QTOF-MS. Analyses of urine samples from five volunteers collected before and after propofol-induced sedation verified the presence of propofol sulfate in urine following propofol administration, whereas ascertained concentrations of this metabolite were significantly lower compared with detected propofol glucuronide concentrations. Conclusions: The existence of propofol sulfate as a further phase II propofol metabolite in humans could be verified by two different detection techniques (LCESIQQQ-MS and LC-ESI-QTOFMS) on the basis of a propofol sulfate reference standard. Evaluation of the quantitative analyses of propofol sulfate imply that propofol sulfate represents a minor metabolite of propofol and is only slightly involved in human propofol clearance.

Journal

Drug Metabolism and Drug Interactionsde Gruyter

Published: Mar 1, 2017

There are no references for this article.