Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract The regularities and relations between real estate prices and the factors that shape them may be presented in the form of statistical models, thanks to which the diagnosis and prediction of prices is possible. A formal description of empirical observation presented in the form of regressive models also offers a possibility for creating certain phenomena in a virtual dimension. Market phenomena cannot be fully described with the use of determinist models, which clarify only a part of price variation. The predicted price is, in this situation, a special case of implementing a random function. Assuming that other implementations are also possible, regressive models may constitute a basis for simulation, which results in the procurement of a future image of the market. Simulation may refer both to real estate prices and transaction prices. The basis for price simulation may be familiarity with the structure of the analyzed market data. Assuming that this structure has a static character, simulation of real estate prices is performed on the basis of familiarity with the probability distribution and a generator of random numbers. The basis for price simulation is familiarity with model parameters and probability distribution of the random factor. The study presents the core and theoretical description of a transaction simulation on the real estate market, as well as the results of an experiment regarding transaction prices of office real estate located within the area of the city of Olsztyn. The result of the study is a collection of virtual real properties with known features and simulated prices, constituting a reflection of market processes which may take place in the near future. Comparison between the simulated characteristic and actual transactions in turn allows the correctness of the description of reality by the model to be verified.
Real Estate Management and Valuation – de Gruyter
Published: Jun 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.