The structural diversity of ginsenosides affects their cholinesterase inhibitory potential

The structural diversity of ginsenosides affects their cholinesterase inhibitory potential AbstractBackground/ObjectiveGinsenosides, the major active components of the ginseng, are known to have various effects on nervous systems. The present study aimed to clarify the inhibition potentials of ginsenosides Rb1, Rc, Re and Rg1 on acetylcholinesterase (AChE) and butrylcholinesterase (BChE) activities, and to evaluate the underlying mechanisms of inhibitions provided by protein-ligand interactions considering their probable candidates of prodrug.Materials and methodsThe inhibitory mechanisms of ginsenosides related with their structural diversity were analyzed kinetically and protein-ligand interactions for both enzymes were evaluated with most potent ginsenosides, by molecular docking studies.ResultsGinsenosides Re and Rg1, with sugar moieties attached to the C-6 and C-20 positions of core structure were found to possess the most powerful inhibitory effect on AChE and BChE activities. Molecular docking studies have been confirmed by kinetic studies. Ginsenosides having a direct interaction with amino acid residues belonging to the catalytic triad revealed the most powerful inhibition with lowest enzyme-inhibitor dissociation constant (Ki) values.ConclusionsGinsenosides Re and Rg1, either alone or in a specific combination, may provide beneficial effects on neurodegenerative pathologies in therapeutic terms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Turkish Journal of Biochemistry de Gruyter

The structural diversity of ginsenosides affects their cholinesterase inhibitory potential

Loading next page...
 
/lp/de-gruyter/the-structural-diversity-of-ginsenosides-affects-their-cholinesterase-0eX2E424Y4
Publisher
de Gruyter
Copyright
©2019 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0250-4685
eISSN
1303-829X
DOI
10.1515/tjb-2018-0534
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground/ObjectiveGinsenosides, the major active components of the ginseng, are known to have various effects on nervous systems. The present study aimed to clarify the inhibition potentials of ginsenosides Rb1, Rc, Re and Rg1 on acetylcholinesterase (AChE) and butrylcholinesterase (BChE) activities, and to evaluate the underlying mechanisms of inhibitions provided by protein-ligand interactions considering their probable candidates of prodrug.Materials and methodsThe inhibitory mechanisms of ginsenosides related with their structural diversity were analyzed kinetically and protein-ligand interactions for both enzymes were evaluated with most potent ginsenosides, by molecular docking studies.ResultsGinsenosides Re and Rg1, with sugar moieties attached to the C-6 and C-20 positions of core structure were found to possess the most powerful inhibitory effect on AChE and BChE activities. Molecular docking studies have been confirmed by kinetic studies. Ginsenosides having a direct interaction with amino acid residues belonging to the catalytic triad revealed the most powerful inhibition with lowest enzyme-inhibitor dissociation constant (Ki) values.ConclusionsGinsenosides Re and Rg1, either alone or in a specific combination, may provide beneficial effects on neurodegenerative pathologies in therapeutic terms.

Journal

Turkish Journal of Biochemistryde Gruyter

Published: Apr 28, 2020

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off