Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

System approach to the analysis of an integrated oxy-fuel combustion power plant

System approach to the analysis of an integrated oxy-fuel combustion power plant Abstract Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO 2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO 2 . Due to the limited adiabatic temperature of combustion some part of CO 2 must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO 2 processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the ‘input-output’ method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Thermodynamics de Gruyter

System approach to the analysis of an integrated oxy-fuel combustion power plant

Loading next page...
 
/lp/de-gruyter/system-approach-to-the-analysis-of-an-integrated-oxy-fuel-combustion-WzClIuJmi5
Publisher
de Gruyter
Copyright
Copyright © 2014 by the
ISSN
2083-6023
eISSN
2083-6023
DOI
10.2478/aoter-2014-0020
Publisher site
See Article on Publisher Site

Abstract

Abstract Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO 2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO 2 . Due to the limited adiabatic temperature of combustion some part of CO 2 must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO 2 processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the ‘input-output’ method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.

Journal

Archives of Thermodynamicsde Gruyter

Published: Sep 1, 2014

There are no references for this article.