Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractEmpirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance, but still mean reverting, behavior is commonly found with nonparametric estimates of the fractional differencing parameter, d, for financial volatility. In this paper, a fully parametric Bayesian estimator, robust to nonstationarity, is designed for the fractionally integrated, autoregressive, stochastic volatility (SV-FIAR) model. Joint estimates of the autoregressive and fractional differencing parameters of volatility are found via a Bayesian, Markov chain Monte Carlo (MCMC) sampler. Like [Jensen, M. J. 2004. “Semiparametric Bayesian Inference of Long-memory Stochastic Volatility.” Journal of Time Series Analysis 25: 895–922.], this MCMC algorithm relies on the wavelet representation of the log-squared return series. Unlike the Fourier transform, where a time series must be a stationary process to have a spectral density function, wavelets can represent both stationary and nonstationary processes. As long as the wavelet has a sufficient number of vanishing moments, this paper’s MCMC sampler will be robust to nonstationary volatility and capable of generating the posterior distribution of the autoregressive and long-memory parameters of the SV-FIAR model regardless of the value of d. Using simulated and empirical stock market return data, we find our Bayesian estimator producing reliable point estimates of the autoregressive and fractional differencing parameters with reasonable Bayesian confidence intervals for either stationary or nonstationary SV-FIAR models.
Studies in Nonlinear Dynamics & Econometrics – de Gruyter
Published: Sep 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.