“Whoa! It’s like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Try 2 weeks free now

Regulation of Cathepsin B Activity by Cysteine and Related Thiols

Abstract We studied the mode of regulation of the activity of mature cathepsin B (CB) by L -cysteine and some related thiols. The activity of CB with Z-Arg-Arg-NHMec as substrate was gradually inhibited over a range of increasing concentration of Cys, Cys methyl ester (CysOMe), Cys ethyl ester (CysOEt), N-acetyl-Cys (NAcCys) and 3-mercaptopropionic acid. However, the inhibition of CB peaked at a definite value of (Cys), (CysOMe), (CysOEt) and (N-AcCys) and was gradually reversed over a range of higher concentrations of Cys and its esters. The maximum inhibitory concentrations of Cys, CysOME, CysOEt and N-AcCys showed a positive relationship to the pk RSH a values of the thiols and those of CysOEt and Cys decreased with increasing pH. The capability of the thiols to overcome their own inhibitory effect on CB was dependent on the concentration of their thiolate anion (RS − ). However, the preincubation-dilution experiments showed that Cys and N-AcCys did not interact with active CB via a covalent mode. The inhibition of CB by N-AcCys was competitive and could be reversed by CysOMe. This activity-recovering effect of CysOMe was concentration-dependent and obeyed the Michaelis-Menten saturation kinetics over a profound increase of (RS − ) CB reacting in an environment of concurrently decreasing (RS − ) and increasing (RSH), which was achieved by means of carboxylesterase-catalyzed deesterification of CysOEt to Cys, was progressively inhibited. Cys and N-AcCys also inhibited the fragmentation of histone H4 by CB and their concentration-dependent inhibitory profiles were qualitatively similar to those observed with Z-Arg-Arg-NHMec. Taken together, the results indicate that the RSH form of Cys and related thiols inhibits the activity of CB while the RS − form of these thiols counteracts or reverses the inhibitory action of the RSH form. This previously unrecognized thiol-thiolate anion regulation mechanism might be involved in a dynamic regulation of CB activity in endosomes and lysosomes and at the sites of lysosome-driven pericellular proteolysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Chemistry de Gruyter
Loading next page...

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy unlimited access and
personalized recommendations from
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $40/month

Try 2 weeks free now

Explore the DeepDyve Library

How DeepDyve Works

Spend time researching, not time worrying you’re buying articles that might not be useful.

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.

All the latest content is available, no embargo periods.

See the journals in your area

Simple and Affordable Pricing

14-day free trial. Cancel anytime, with a 30-day money-back guarantee.

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Best Deal — 25% off

Annual Plan

  • All the features of the Professional Plan, but for 25% off!
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

billed annually