PSS with SVC Damping Controllers Coordinated Design and Real-Time Implementation in Multi-Machine Power System Using Advanced Adaptive PSO

PSS with SVC Damping Controllers Coordinated Design and Real-Time Implementation in Multi-Machine... Abstract This article proposed coordinated tuning and real-time implementation of power system stabilizer (PSS) with static var compensator (SVC) in multi-machine power system. The design of proposed coordinated damping controller is formulated as an optimization problem, and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization. Here, PSS with SVC installed in multi-machine system is examined. The coordinated tuning among the damping controllers is performed on the non-linear power system dynamic model. Finally, the proposed coordinated controller performance is discussed with time-domain simulations. Different loading conditions are employed on the test system to test the robustness of proposed coordinate controller, and the simulation results are compared with four different control schemes. To validate the proposed controller, the test power system is also implemented on real-time (OPAL-RT) simulator, and acceptable results are reported for its verifications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Emerging Electric Power Systems de Gruyter

PSS with SVC Damping Controllers Coordinated Design and Real-Time Implementation in Multi-Machine Power System Using Advanced Adaptive PSO

Loading next page...
 
/lp/de-gruyter/pss-with-svc-damping-controllers-coordinated-design-and-real-time-WphQGNZHHT
Publisher
de Gruyter
Copyright
Copyright © 2013 by the
ISSN
2194-5756
eISSN
1553-779X
DOI
10.1515/ijeeps-2013-0049
Publisher site
See Article on Publisher Site

Abstract

Abstract This article proposed coordinated tuning and real-time implementation of power system stabilizer (PSS) with static var compensator (SVC) in multi-machine power system. The design of proposed coordinated damping controller is formulated as an optimization problem, and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization. Here, PSS with SVC installed in multi-machine system is examined. The coordinated tuning among the damping controllers is performed on the non-linear power system dynamic model. Finally, the proposed coordinated controller performance is discussed with time-domain simulations. Different loading conditions are employed on the test system to test the robustness of proposed coordinate controller, and the simulation results are compared with four different control schemes. To validate the proposed controller, the test power system is also implemented on real-time (OPAL-RT) simulator, and acceptable results are reported for its verifications.

Journal

International Journal of Emerging Electric Power Systemsde Gruyter

Published: Sep 3, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month