Access the full text.
Sign up today, get DeepDyve free for 14 days.
Probabilistic model of fibrillation currents created by superposition of two shocking currents with different frequencies The paper presents the probabilistic model of fibrillation currents containing two components with different frequencies. An analysis was conducted of the threat of ventricular fibrillation which occurs in consequence of the electric shock with the highest permissible contact shocking voltage of the network frequency (50 Hz), taking into account the threat caused by the second component of the voltage which has the frequency higher than the network frequency. The sample results of calculations apply to the probability of the ventricular fibrillation in case of a shock caused by the highest permissible contact shocking voltage, for the defined time of shock duration, without and with the participation of an additional voltage component with higher frequency. The formula has been presented for the calculation of the highest permissible contact shock voltages with taking into account the voltage component of the frequency higher than the network frequency. The results of calculations indicate that a considerable reduction of the highest permissible contact shock voltage is necessary in order to compensate for a growth of the ventricular fibrillation threat caused by the presence of an additional component with the frequency other the network frequency. This applies in particular to the long shock duration times and low frequencies (up to 500 Hz) of an additional component of the shocking voltage.
Archives of Electrical Engineering – de Gruyter
Published: Sep 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.