Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Preparation and adsorption properties of Ni(ii) ion-imprinted polymers based on synthesized novel functional monomer

Preparation and adsorption properties of Ni(ii) ion-imprinted polymers based on synthesized novel... AbstractIn this study, a novel functional monomer N-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethyl)acrylamide (NDTEA) was designed and synthesized, and was used to prepare Ni(ii) ion-imprinted polymers (Ni(ii)-IIPs). Sixteen kinds of Ni(ii)-IIP (Ni(ii)-IIP1–16) and corresponding non-imprinted polymers (NIP1–16) were prepared by precipitation polymerization method. After optimized condition experiment, Ni(ii)-IIP5 possessed maximum adsorption capacity and better imprinting factor under optimal experimental conditions which indicated by equilibrium adsorption experiments. The morphology and structural characteristics of Ni(ii)-IIP5 were characterized by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET). The adsorption selectivity of Ni(ii)-IIP5 was analyzed by ICP-OES, and the results showed that Ni(ii)-IIP5 had favorable selectivity recognition ability for Ni(ii) when Cu(ii), Co(ii), and Cd(ii) are used as competitive ions. The kinetic experiment indicated that the performance of Ni(ii) adsorption on the surface of Ni(ii)-IIP5 obeyed the pseudo-first-order model, and adsorption equilibrium was attained after 15 min. Isothermal adsorption process fitted to Langmuir and Freundlich isothermal adsorption models, simultaneously. The results showed that Ni(ii)-IIP5 prepared by using a new functional monomer had better permeation selectivity and higher affinity for Ni(ii), which also verified the rationality of the functional monomer design. At the same time, it also provided a broad application prospect for removal of Ni(ii) in complex samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png e-Polymers de Gruyter

Preparation and adsorption properties of Ni(ii) ion-imprinted polymers based on synthesized novel functional monomer

Loading next page...
 
/lp/de-gruyter/preparation-and-adsorption-properties-of-ni-ii-ion-imprinted-polymers-nFE4BA1Uw1
Publisher
de Gruyter
Copyright
© 2021 Li Zhao et al., published by De Gruyter
ISSN
2197-4586
eISSN
1618-7229
DOI
10.1515/epoly-2021-0055
Publisher site
See Article on Publisher Site

Abstract

AbstractIn this study, a novel functional monomer N-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethyl)acrylamide (NDTEA) was designed and synthesized, and was used to prepare Ni(ii) ion-imprinted polymers (Ni(ii)-IIPs). Sixteen kinds of Ni(ii)-IIP (Ni(ii)-IIP1–16) and corresponding non-imprinted polymers (NIP1–16) were prepared by precipitation polymerization method. After optimized condition experiment, Ni(ii)-IIP5 possessed maximum adsorption capacity and better imprinting factor under optimal experimental conditions which indicated by equilibrium adsorption experiments. The morphology and structural characteristics of Ni(ii)-IIP5 were characterized by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET). The adsorption selectivity of Ni(ii)-IIP5 was analyzed by ICP-OES, and the results showed that Ni(ii)-IIP5 had favorable selectivity recognition ability for Ni(ii) when Cu(ii), Co(ii), and Cd(ii) are used as competitive ions. The kinetic experiment indicated that the performance of Ni(ii) adsorption on the surface of Ni(ii)-IIP5 obeyed the pseudo-first-order model, and adsorption equilibrium was attained after 15 min. Isothermal adsorption process fitted to Langmuir and Freundlich isothermal adsorption models, simultaneously. The results showed that Ni(ii)-IIP5 prepared by using a new functional monomer had better permeation selectivity and higher affinity for Ni(ii), which also verified the rationality of the functional monomer design. At the same time, it also provided a broad application prospect for removal of Ni(ii) in complex samples.

Journal

e-Polymersde Gruyter

Published: Aug 11, 2021

Keywords: Ni( ii ) ion; novel functional monomer; NDTEA; Ni( ii ) ion-imprinted polymer; selectivity

There are no references for this article.