Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractWe study the dynamics of the family of copulas {Ct}t≥0 of a pair of stochastic processes given by stochastic differential equations (SDE). We associate to it a parabolic partial differential equation (PDE). Having embedded the set of bivariate copulas in a dual of a Sobolev Hilbert space H1 (ℝ2)* we calculate the derivative with respect to t and the *weak topology i.e. the tangent vector field to the image of the curve t → Ct. Furthermore we show that the family {Ct}t≥0 is an orbit of a strongly continuous semigroup of transformations and provide the infinitesimal generator of this semigroup.
Dependence Modeling – de Gruyter
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.