Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractWe show that any distribution function on ℝd with nonnegative, nonzero and integrable marginal distributions can be characterized by a norm on ℝd+1, called F-norm. We characterize the set of F-norms and prove that pointwise convergence of a sequence of F-norms to an F-norm is equivalent to convergence of the pertaining distribution functions in the Wasserstein metric. On the statistical side, an F-norm can easily be estimated by an empirical F-norm, whose consistency and weak convergence we establish.The concept of F-norms can be extended to arbitrary random vectors under suitable integrability conditions fulfilled by, for instance, normal distributions. The set of F-norms is endowed with a semigroup operation which, in this context, corresponds to ordinary convolution of the underlying distributions. Limiting results such as the central limit theorem can then be formulated in terms of pointwise convergence of products of F-norms.We conclude by showing how, using the geometry of F-norms, we may characterize nonnegative integrable distributions in ℝd by simple compact sets in ℝd+1. We then relate convergence of those distributions in the Wasserstein metric to convergence of these characteristic sets with respect to Hausdorff distances.
Dependence Modeling – de Gruyter
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.