Nano-mupirocin: enabling the parenteral activity of mupirocin

Nano-mupirocin: enabling the parenteral activity of mupirocin Abstract Mupirocin is an antibiotic having a unique mode of action, not shared by any other therapeutically available antibiotic. However, due to its rapid elimination following injection and high protein binding, current therapeutic use is limited to topical administration. Computational methods have identified mupirocin as a good candidate for delivery via long-circulating nano-liposomes. Formulating mupirocin in such liposomes to form Nano-mupirocin protects the drug in the circulation, enabling therapeutic efficacy. This was demonstrated using two different animal models that served as a proof of concept: the mice necrotizing fasciitis and rabbit endocarditis models. In both animal models, mupirocin administered intravenously (IV) lacked therapeutic efficacy, while the Nano-mupirocin administered IV was efficacious. In both mice and rabbits the pharmacokinetic (PK) profile following IV injection of Nano-mupirocin showed significantly greater AUC and elimination half-life of Nano-mupirocin compared to the free drug. In addition, in mice we also demonstrated significant drug distribution into the disease site. These PK profiles may explain Nano-mupirocin’s superior therapeutic efficacy. To the best of our knowledge, this is the first study demonstrating that systemic activity of mupirocin is feasible. Therefore, Nano-mupirocin can be considered a novel and unique parenteral antibiotic candidate drug. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Nanomedicine de Gruyter

Loading next page...
 
/lp/de-gruyter/nano-mupirocin-enabling-the-parenteral-activity-of-mupirocin-6jhH1oLvDe
Publisher
de Gruyter
Copyright
Copyright © 2016 by the
ISSN
1662-5986
eISSN
1662-596X
D.O.I.
10.1515/ejnm-2016-0006
Publisher site
See Article on Publisher Site

Abstract

Abstract Mupirocin is an antibiotic having a unique mode of action, not shared by any other therapeutically available antibiotic. However, due to its rapid elimination following injection and high protein binding, current therapeutic use is limited to topical administration. Computational methods have identified mupirocin as a good candidate for delivery via long-circulating nano-liposomes. Formulating mupirocin in such liposomes to form Nano-mupirocin protects the drug in the circulation, enabling therapeutic efficacy. This was demonstrated using two different animal models that served as a proof of concept: the mice necrotizing fasciitis and rabbit endocarditis models. In both animal models, mupirocin administered intravenously (IV) lacked therapeutic efficacy, while the Nano-mupirocin administered IV was efficacious. In both mice and rabbits the pharmacokinetic (PK) profile following IV injection of Nano-mupirocin showed significantly greater AUC and elimination half-life of Nano-mupirocin compared to the free drug. In addition, in mice we also demonstrated significant drug distribution into the disease site. These PK profiles may explain Nano-mupirocin’s superior therapeutic efficacy. To the best of our knowledge, this is the first study demonstrating that systemic activity of mupirocin is feasible. Therefore, Nano-mupirocin can be considered a novel and unique parenteral antibiotic candidate drug.

Journal

European Journal of Nanomedicinede Gruyter

Published: Jul 1, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off