Molecular Modeling of Lignin β-O-4 Model Compounds. Comparative Study of the Computed and Experimental Conformational Properties for a Guaiacyl β-O-4 Dimer

Molecular Modeling of Lignin β-O-4 Model Compounds. Comparative Study of the Computed and... Summary The conformational preferences of the threo and erythro diastereomeric forms of a guaiacyl β-O-4 dimer have been investigated by molecular modeling using the CHARMM force field. Many low energy conformations have been identified for each diastereomer, showing that β-O-4 dimers can adopt a large variety of shapes. A consistent structural model has emerged that indicates different conformational behavior for the threo and erythro forms, corresponding to a preferential extended overall shape for the threo form. All the low energy conformers are stabilized by intramolecular H-bonds. In particular, the highly directional H-bond between the α or γ hydroxyl hydrogen and the aromatic methoxy oxygen governs the B aromatic ring orientation. However, it has appeared that the conformational preferences are predominantly governed by local steric interactions rather than by differences in the H-bonding pattern. From the satisfactory agreement between computed data (geometries and the Boltzmann distribution of the low energy conformers) and the experimental data reported in the literature (X-ray crystal structures and 3 J HαHβ NMR coupling constant), the CHARMM force field has been validated for the study of β-O-4 structures. Clearly, the molecular modeling calculations have led to an improved rationalization of the conformational data collected by experimental techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Holzforschung de Gruyter

Molecular Modeling of Lignin β-O-4 Model Compounds. Comparative Study of the Computed and Experimental Conformational Properties for a Guaiacyl β-O-4 Dimer

Loading next page...
 
/lp/de-gruyter/molecular-modeling-of-lignin-o-4-model-compounds-comparative-study-of-dzOEAMqDUU
Publisher
de Gruyter
Copyright
Copyright © 2003 by the
ISSN
0018-3830
DOI
10.1515/HF.2003.040
Publisher site
See Article on Publisher Site

Abstract

Summary The conformational preferences of the threo and erythro diastereomeric forms of a guaiacyl β-O-4 dimer have been investigated by molecular modeling using the CHARMM force field. Many low energy conformations have been identified for each diastereomer, showing that β-O-4 dimers can adopt a large variety of shapes. A consistent structural model has emerged that indicates different conformational behavior for the threo and erythro forms, corresponding to a preferential extended overall shape for the threo form. All the low energy conformers are stabilized by intramolecular H-bonds. In particular, the highly directional H-bond between the α or γ hydroxyl hydrogen and the aromatic methoxy oxygen governs the B aromatic ring orientation. However, it has appeared that the conformational preferences are predominantly governed by local steric interactions rather than by differences in the H-bonding pattern. From the satisfactory agreement between computed data (geometries and the Boltzmann distribution of the low energy conformers) and the experimental data reported in the literature (X-ray crystal structures and 3 J HαHβ NMR coupling constant), the CHARMM force field has been validated for the study of β-O-4 structures. Clearly, the molecular modeling calculations have led to an improved rationalization of the conformational data collected by experimental techniques.

Journal

Holzforschungde Gruyter

Published: Apr 25, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off