Molecular Diagnostics by Microelectronic Microchips

Molecular Diagnostics by Microelectronic Microchips Abstract Molecular diagnostics is being revolutionized by the completion of the human genome project and by the development of highly advanced technologies for DNA testing. One of the most important challenges is the introduction of high throughput systems such as DNA chips into diagnostic laboratories. DNA microchips are small devices permitting rapid analysis of genetic information, exploiting miniaturization of all components and automation of operational procedures. The most important biochip applications include gene expression and genetic variation identification and both may improve human molecular diagnostics. Here we review several approaches developed to allow rapid detection of many single nucleotide polymorphisms and mutations in large population samples. Among these, the use of microelectronics seems to best fit with the needs of molecular diagnostics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

Loading next page...
 
/lp/de-gruyter/molecular-diagnostics-by-microelectronic-microchips-zC0Y1Nf8T8
Publisher
de Gruyter
Copyright
Copyright © 2003 by the
ISSN
1434-6621
DOI
10.1515/CCLM.2003.069
pmid
12747587
Publisher site
See Article on Publisher Site

Abstract

Abstract Molecular diagnostics is being revolutionized by the completion of the human genome project and by the development of highly advanced technologies for DNA testing. One of the most important challenges is the introduction of high throughput systems such as DNA chips into diagnostic laboratories. DNA microchips are small devices permitting rapid analysis of genetic information, exploiting miniaturization of all components and automation of operational procedures. The most important biochip applications include gene expression and genetic variation identification and both may improve human molecular diagnostics. Here we review several approaches developed to allow rapid detection of many single nucleotide polymorphisms and mutations in large population samples. Among these, the use of microelectronics seems to best fit with the needs of molecular diagnostics.

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Apr 25, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off