Molecular Basis for Interactions of the DnaK Chaperone with Substrates

Molecular Basis for Interactions of the DnaK Chaperone with Substrates Abstract Hsp70 chaperones assist a large variety of protein folding processes in the cell by transient association with short peptide segments of proteins. The substrate binding and release cycle is driven by the switching between the low affinity ATP bound state and the high affinity ADP bound state of Hsp70. Considerable progress has been made recently by the identification of in vivo substrates for the Escherichia coli homolog, DnaK, and the molecular mechanisms which govern the DnaK-substrate interactions. Here we review the processes that generate DnaK substrates in vivo and the properties of these substrates, and we describe insights gained from structural and kinetic analysis of DnaK-substrate interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Chemistry de Gruyter

Molecular Basis for Interactions of the DnaK Chaperone with Substrates

Loading next page...
 
/lp/de-gruyter/molecular-basis-for-interactions-of-the-dnak-chaperone-with-substrates-LJojhRmEgL
Publisher
de Gruyter
Copyright
Copyright © 2000 by the
ISSN
1431-6730
DOI
10.1515/BC.2000.109
pmid
11076019
Publisher site
See Article on Publisher Site

Abstract

Abstract Hsp70 chaperones assist a large variety of protein folding processes in the cell by transient association with short peptide segments of proteins. The substrate binding and release cycle is driven by the switching between the low affinity ATP bound state and the high affinity ADP bound state of Hsp70. Considerable progress has been made recently by the identification of in vivo substrates for the Escherichia coli homolog, DnaK, and the molecular mechanisms which govern the DnaK-substrate interactions. Here we review the processes that generate DnaK substrates in vivo and the properties of these substrates, and we describe insights gained from structural and kinetic analysis of DnaK-substrate interaction.

Journal

Biological Chemistryde Gruyter

Published: Sep 13, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off