Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract. For every odd prime and every integer , there is a Heisenberg group of order that has pairwise nonisomorphic quotients of order . Yet, these quotients are virtually indistinguishable. They have isomorphic character tables, every conjugacy class of a non-central element has the same size, and every element has order at most . They are also directly and centrally indecomposable and of the same indecomposability type. Nevertheless, there is a polynomial-time algorithm to test for isomorphisms between these groups.
Groups - Complexity - Cryptology – de Gruyter
Published: May 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.