Interactions in iron gall inks

Interactions in iron gall inks Abstract Simple iron gall inks composed of gallic acid, ferrous sulfate, and gum arabic and in some cases also of copper(II) sulfate were prepared. The process of iron ion complex formation with gallic acid was investigated using UV-VIS spectroscopy, pH measurements, and by monitoring the concentration changes of Fe(II) ions. The admixture of Fe(II) ions to gallic acid induced a bathochromic shift of absorption bands at 215 nm and 265 nm in the UV-VIS spectra. Formation of a new absorbance band in the visible area was also observed and used to calculate the initial rate of complex formation. Concurrently, the pH values and the concentration of Fe(II) ions in the solution decreased. Gum arabic significantly enhanced the complex formation and its stability. On the contrary, the addition of Cu(II) ions to the solution decelerated the complex formation considerably. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical Papers de Gruyter

Loading next page...
 
/lp/de-gruyter/interactions-in-iron-gall-inks-0Vh3A9a5to
Publisher
de Gruyter
Copyright
Copyright © 2007 by the
eISSN
1336-9075
DOI
10.2478/s11696-007-0053-0
Publisher site
See Article on Publisher Site

Abstract

Abstract Simple iron gall inks composed of gallic acid, ferrous sulfate, and gum arabic and in some cases also of copper(II) sulfate were prepared. The process of iron ion complex formation with gallic acid was investigated using UV-VIS spectroscopy, pH measurements, and by monitoring the concentration changes of Fe(II) ions. The admixture of Fe(II) ions to gallic acid induced a bathochromic shift of absorption bands at 215 nm and 265 nm in the UV-VIS spectra. Formation of a new absorbance band in the visible area was also observed and used to calculate the initial rate of complex formation. Concurrently, the pH values and the concentration of Fe(II) ions in the solution decreased. Gum arabic significantly enhanced the complex formation and its stability. On the contrary, the addition of Cu(II) ions to the solution decelerated the complex formation considerably.

Journal

Chemical Papersde Gruyter

Published: Oct 1, 2007

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off