Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Green synthesis, structural characterization, and catalytic activity of silver nanoparticles stabilized with Bridelia retusa leaf extract

Green synthesis, structural characterization, and catalytic activity of silver nanoparticles... Abstract:An environmentally benign method to synthesize silver nanoparticles (SNPs) using the leaf extract of Bridelia retusa was developed. The UV-Vis absorption spectrum of the synthesized SNPs displayed a surface plasmon peak at 420 nm. Scanning electron microscopy (SEM) revealed the irregular shaped nanoparticles, and energy dispersive X-ray (EDX) ascertained the presence of metallic silver by showing a strong signal at 3 eV. The crystalline structure of metallic silver was confirmed by X-ray diffraction (XRD). The mean size of the SNPs was calculated as 16.21 nm. Fourier infrared (FT-IR) spectroscopic studies displayed specific bands for various functional groups and affirmed the function of reduction and stabilization of SNPs. The stability was endorsed by the zeta potential value of −18.1 mV. The results evidenced that this leaf extract-mediated synthesis method is eco-friendly, rapid, and cheap. The catalytic power of the SNPs was investigated for Rhodamine B dye degradation. The SNPs completely degraded Rhodamine B within 9 min; thus, the dye degradation process was very rapid. The pseudo-first order degradation constant was found out to be 0.1323 min−1. This paves the way for the future development of novel nano-catalysts to reduce environmental pollution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Green Processing and Synthesis de Gruyter

Green synthesis, structural characterization, and catalytic activity of silver nanoparticles stabilized with Bridelia retusa leaf extract

Loading next page...
 
/lp/de-gruyter/green-synthesis-structural-characterization-and-catalytic-activity-of-AtdXCUs0CJ

References (58)

Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-9550
eISSN
2191-9550
DOI
10.1515/gps-2016-0236
Publisher site
See Article on Publisher Site

Abstract

Abstract:An environmentally benign method to synthesize silver nanoparticles (SNPs) using the leaf extract of Bridelia retusa was developed. The UV-Vis absorption spectrum of the synthesized SNPs displayed a surface plasmon peak at 420 nm. Scanning electron microscopy (SEM) revealed the irregular shaped nanoparticles, and energy dispersive X-ray (EDX) ascertained the presence of metallic silver by showing a strong signal at 3 eV. The crystalline structure of metallic silver was confirmed by X-ray diffraction (XRD). The mean size of the SNPs was calculated as 16.21 nm. Fourier infrared (FT-IR) spectroscopic studies displayed specific bands for various functional groups and affirmed the function of reduction and stabilization of SNPs. The stability was endorsed by the zeta potential value of −18.1 mV. The results evidenced that this leaf extract-mediated synthesis method is eco-friendly, rapid, and cheap. The catalytic power of the SNPs was investigated for Rhodamine B dye degradation. The SNPs completely degraded Rhodamine B within 9 min; thus, the dye degradation process was very rapid. The pseudo-first order degradation constant was found out to be 0.1323 min−1. This paves the way for the future development of novel nano-catalysts to reduce environmental pollution.

Journal

Green Processing and Synthesisde Gruyter

Published: Feb 23, 2018

There are no references for this article.