Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
AbstractUAS (Unmanned Aerial Systems) are commonly used in 3D (dull, dirty and dangerous) missions, because these are not endangering the operators life, while reduce maintenance costs and increase maneuvering capabilities. Despite of these advantages we should consider the possible vulnerabilities of this technology as well. Unmanned vehicles can be controlled via direct communication link, or they can work in a preprogrammed mode. Usually the preprogrammed mode is based on radio navigation systems, so we can draw a conclusion that both depend on the RF environment. In this paper I analyze a possibility to effectively evaluate the communication link of an UAS. Developers have to consider several key factors (type of operation, endurance, payload type and size, propulsion, communication link, etc.) during the development process. They are also responsible that the final product meets the predefined requirements. On the other side commercial UAS owners should have a possibility to compare and evaluate the UAS before the acquisition. Finally, operators and frequency management entities need tools to diagnose the possible sources of interference regarding the unmanned vehicles. To understand the consequences of interference in the RF spectrum we have to be able to measure the quality of the communication link in different usage scenarios. In my research I evaluate the usage of SDRs (Software Defined Radios) in RF Test and Evaluation processes. After analyzing the possibilities for a flexible testbed, I demonstrate the usability with some measurements in the GNU Radio signal processing framework.
Acta Universitatis Sapientiae Electrical and Mechanical Engineering – de Gruyter
Published: Dec 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.