Evolutionary history of water voles revisited: confronting a new phylogenetic model from molecular data with the fossil record

Evolutionary history of water voles revisited: confronting a new phylogenetic model from... AbstractRecent water voles (genus Arvicola) display a prominent morphological diversity with a strong ecotypical background but with unclear taxonomic associations. We provide a novel synthetic view on the evolutionary history and the current taxonomic richness in the genus. Our molecular reconstruction, based on a 1143-bp-long sequence of cytochrome b and a 926-bp interphotoreceptor retinoid binding protein (irbp) confirmed the monophyly of four species (amphibius, sapidus, monticola and italicus) recognized thus far, and retrieved a new deeply divergent lineage from West Iran. Genetic divergence of the Iranian lineage (>9.0%) is inside the range of interspecies distances, exceeding the interspecies divergences between the remaining Arvicola species (range, 4.3–8.7%). The oldest name available for the Iranian phylogroup is Arvicola persicus de Filippi, 1865, with the type locality in Soltaniyeh, Iran. The molecular clock suggests the divergence of A. persicus in the Early Pleistocene (2.545 Ma), and the current radiation of the remaining species between 1.535 Ma (Arvicola sapidus) and 0.671 Ma. While A. sapidus possibly evolved from Arvicola jacobaeus, a fossil ancestor to A. persicus is unknown. The aquatic life-style of Mimomys savini, a direct ancestor to some fossil Arvicola, is retained in recent stem species A. sapidus and A. persicus, while a major shift toward fossorial morphotype characterizes the terminal lineages (amphibius, italicus and monticola). We suggest that habitat-dependent morphological plasticity and positive enamel differentiation in Arvicola amphibius widened its ecological niche that might trigger a range expansion across c. 12 million km2, making it one of the largest among arvicolines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalia. International Journal of the Systematics, Biology & Ecology of Mammals de Gruyter

Evolutionary history of water voles revisited: confronting a new phylogenetic model from molecular data with the fossil record

Loading next page...
 
/lp/de-gruyter/evolutionary-history-of-water-voles-revisited-confronting-a-new-00pezZjBi4
Publisher
de Gruyter
Copyright
©2020 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0025-1461
eISSN
1864-1547
DOI
10.1515/mammalia-2018-0178
Publisher site
See Article on Publisher Site

Abstract

AbstractRecent water voles (genus Arvicola) display a prominent morphological diversity with a strong ecotypical background but with unclear taxonomic associations. We provide a novel synthetic view on the evolutionary history and the current taxonomic richness in the genus. Our molecular reconstruction, based on a 1143-bp-long sequence of cytochrome b and a 926-bp interphotoreceptor retinoid binding protein (irbp) confirmed the monophyly of four species (amphibius, sapidus, monticola and italicus) recognized thus far, and retrieved a new deeply divergent lineage from West Iran. Genetic divergence of the Iranian lineage (>9.0%) is inside the range of interspecies distances, exceeding the interspecies divergences between the remaining Arvicola species (range, 4.3–8.7%). The oldest name available for the Iranian phylogroup is Arvicola persicus de Filippi, 1865, with the type locality in Soltaniyeh, Iran. The molecular clock suggests the divergence of A. persicus in the Early Pleistocene (2.545 Ma), and the current radiation of the remaining species between 1.535 Ma (Arvicola sapidus) and 0.671 Ma. While A. sapidus possibly evolved from Arvicola jacobaeus, a fossil ancestor to A. persicus is unknown. The aquatic life-style of Mimomys savini, a direct ancestor to some fossil Arvicola, is retained in recent stem species A. sapidus and A. persicus, while a major shift toward fossorial morphotype characterizes the terminal lineages (amphibius, italicus and monticola). We suggest that habitat-dependent morphological plasticity and positive enamel differentiation in Arvicola amphibius widened its ecological niche that might trigger a range expansion across c. 12 million km2, making it one of the largest among arvicolines.

Journal

Mammalia. International Journal of the Systematics, Biology & Ecology of Mammalsde Gruyter

Published: Mar 26, 2020

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off