Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) recorded for the first time in Slovenia

Entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) recorded... In Slovenia only recently entomopathogenic nematodes were recorded for the first time. In the beginning of 2007, the presence of Steinernema affine was confirmed. During the further investigations in the same year Steinernema feltiae was recorded on the arable field near Cerknica. In the previous year this field was planted with chicory. In Slovenia, until now the entomopathogenic nematodes had a status of an exotic agents and their use was allowed only in the laboratory experiments. We expect that in Slovenia the use of these biological agents against insect pests will become important alternative to insecticides as it is known in many other countries of the world. Key words biological control, entomopathogenic nematodes, exotic agents, Slovenia, Steinernema affine, Steinernema feltiae IZVLEýEK ENTOMOPATOGENA OGORýICA Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) PRVIý UGOTOVLJENA V SLOVENIJI V Sloveniji so bile entomopatogene ogorþice prviþ ugotovljene sele nedavno. V zaþetku leta 2007 je bila potrjena zastopanost vrste Steinernema affine, med nadaljnjimi raziskavami v istem letu pa je bila na njivi v blizini Cerknice najdena tudi ogorþica Steinernema feltiae. Na omenjenem zemljisþu so leto prej pridelovali radiþ. Doslej so imele entomopatogene ogorþice v Sloveniji status tujerodnih organizmov, njihova uporaba pa je bila dovoljena le v laboratorijskih poskusih. Priþakujemo, da bo v Sloveniji uporaba omenjenih naravnih sovraznikov skodljivih zuzelk postala pomembna alternativa insekticidom, kar je sicer ze znano v stevilnih drugih drzavah sveta. Kljuþne besede biotiþno varstvo, entomopatogene ogorþice, Slovenija, Steinernema affine, Steinernema feltiae, tujerodni organizmi, Young researcher, B. Sc., Jamnikarjeva 101, SI-1111 Ljubljana, email:ziga.laznik@bf.uni-lj.si Ph.D student, M. Sc., Vadastag 2, H-4244 Újfehértó, Hungary Ph. D, Vadastag 2, H-4244 Újfehértó, Hungary Assist. Prof., Ph. D, Jamnikarjeva 101, SI-1111 Ljubljana 38 Acta agriculturae Slovenica, 91 - 1, maj 2008 INTRODUCTION In Slovenia, the first research on entomopathogenic nematodes (EPNs) was carried out in 2004. Because in Slovenia EPNs still have a status of an exotic agents, all earlier researches were limited merely to laboratory experiments. The aim of previous research was to study the efficacy of the nematodes against foliar pests (Laznik et al., 2007). EPNs from the families Steinernematidae and Heterorhabditidae are important pathogens of insects. These soil organisms are mutually associated with bacteria from genus Photorhabdus Boemare, Akhurst and Mourant (genus Heterorhabditis) and bacteria from genus Xenorhabdus Thomas and Poinar (genus Steinernema) (Burnell and Stock, 2000). After infection, the symbiotic bacteria are released into the insect hemocoel, causing septicemia and death of the insect in 24 to 72 hours (Forst and Clarke, 2002). Because of broad spectrum of target hosts from the class Insecta, their application as a way of biological control of plants against pests is so far very well known (Kaya and Gaugler, 1993). Application of EPNs in biological control was traditionary engaged in controlling soil pests until some years ago (Ishibashi and Choi, 1991). Results from research in the last two decades indicate also their potential against foliar pests, but only under special conditions (Arthurs et al., 2004). Poorer efficacy of EPNs in controlling foliar pest is a consequence of unsuitable (too low) moisture (Lello et al., 1996), exposure to extreme temperatures (Grewal et al., 1994), and ultraviolet radiation (Gaugler and Boush, 1978). These factors are known as crucial for nematodes survival (Kaya, 1990). For this reason the efficacy of foliar pests with EPNs in the open is therefore often worser as expected, although predecessor laboratory tests shows rather better efficacy (Buitenhuis and Shipp, 2005). Numerous other research showed that at lower concentration EPNs are much more efficient in controlling preadult stages of insects from order Coleoptera (Ansari et al., 2003). Similar findings were also confirmed with controlling insects from other orders; Thysanoptera (Premachandra et al., 2003), Lepidoptera (Yakir-Ben et al., 1998), Diptera (Willmott et al., 2002) and some others. In majority of cases it was about the larvae, which life cycle is predominantly linked with soil and easily attacked by EPNs. 2 MATERIALS AND METHODS In October 2007, we examined 77 soil samples on the occurrence of EPNs in Slovenia. The soil samples were taken in Notranjska region of Slovenia, which is the south central part of the country. We used »Galleria bait method«, which is the most frequently used method of EPNs detection from soil. After the death of wax moth (Galleria mellonella [Linnaeus]) larvae, we dried cadavers for 12 days and put them in so called »White trap« (Bedding and Akhurst, 1975) to separate the nematodes from death larvae. With the received suspension we infected artificialy larvae of wax moth again. Following procedure contained the use of centrifuge and 5 % concetration of sodium hypoclorate. The aim of this process was to get infective juveniles from the suspension. We confirmed the presence of nematodes in 9.09 % of samples. Only 1 positive sample, B30 (taken on the chicory arable field near Cerknica (SW Slovenia, 45°48'N, 14°22'E, 572 m alt.) was identified to this time. RESULTS To confirm the identification of isolated nematodes from larvae of wax moth, a selected sample was analysed by molecular biological approach. Genomic DNA was extracted from individual nematodes and PCR was performed to multiply ITS region using primers TW81 and AB28 after Hominick et al. (1997). PCR product were reisolated from 1% TAE-buffered agarose gel using E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek, USA) (Fig. 1). Reisolated sample was sequenced in the laboratory of Agricultural Biotechnology Centre in Gödöll , Hungary. Sample DNA sequence was compared to sequences of species Steinernema using BLAST search in National Centre for Biotechnology Information (NCBI) web site (www.ncbi.nlm.nih.gov). The sequences producing significant alignments and at least 99% identity were derived from Steinernema feltiae: GenBank Accession No. DQ310469 and AF121050 (Nguyen et al., 2001) (Fig. 2). Figure 1: 1% TAE buffered agarose gel, in the 1st and 5th lanes: GeneRuler 100 bp DNA Ladder Plus (Fermentas), in the 2nd lane: PCR product of our sample B30, using the primer pair specified in the text, 3rd lane: PCR product of sample B49, 4th lane: PCR product of sample 3162. The two most strength fragment in the ladder are 500 and 1000 bps length. DISCUSSION Genetic studies proved that the nematode species is Steinernema feltiae Filipjev (1934) (Fig. 3). The ITS1-5.8S-ITS2 region, including the partial 18S and 28S rDNA genes (flanked by above primers) of Slovenian isolate B30 is 742bp long. 40 Acta agriculturae Slovenica, 91 - 1, maj 2008 BLAST searches (Altschul et al., 1990) in GenBank showed that Slovenian isolate B30 has a high similarity (99%) with those sequences available for S. feltiae populations (e.g. accession numbers DQ310469 and AF121050). Sequence of other species from feltiae group, namely S. litorale was obtained from GenBank searches that exhibited a lesser degree of similarity with the Slovenian isolate and other S. feltiae populations (e.g. accesion number AB243441) (Fig. 3). The present study constitutes the first report of S. feltiae in Slovenia. S. feltiae has a wide distribution in temperate regions, being one of the most common species found in Europe, and in many other parts of the world (for a detailed EPN species distribution see Hominick, 2002). 30381 1 GGCTTA-CCATTT-CTTGGATTCAAATGAATCGAGCTGAAT-TTTCGCTGTTCGTTTCA 56 DQ310469 177 .....T......A...........................-................. 233 AF121050 177 .....T......A...........................-................. 233 AB243441 198 .....T......A.........................C.-........A....C... 254 30381 57 CTGGAG 111 DQ310469 234 ...... 288 AF121050 234 ...... 288 AB243441 255 ...... 308 AAGCG-TTGT-ATTCTCTCAACTAACGGCTAT-GAATGGTTTCTATAGG-TGT.....-....-.....................-................-........-....-.....................-................-........-..-A-.....................-................-...- 30381 112 CAGTTGTATGAGCGTGACTGTGGTGATGGACAT-TTTG-GTGGCTCCTTAGTCG-GGTC 167 DQ310469 289 .................................-....-...............-.... 344 AF121050 289 .................................-....-...............-.... 344 AB243441 309 ................................--...-.-A.-.T...-..-.-- 354 30381 TCAATTA DQ310469 ....... AF121050 ....... AB243441 ....... 168 220 345 397 345 397 355 407 ACT-AGAATTAAAGAAGTCTGTT-A-TGACTCGCCGTTCTTA-AAAAACT...-...................-.-................-..........-...................-.-................-..........-...................-.-................-.......- 30381 221 ACGTTTGATC-AATTTGACTGCACCAGCC-GT-AGGTGT-ACTTAAAGATTTATCAAGT 275 DQ310469 398 ..........-..................-..-......-................... 452 AF121050 398 ..........-..................-..-......-................... 452 AB243441 408 ..........-..................-..-......-G.................. 462 30381 CCGTTATTT DQ310469 ......... AF121050 ......... AB243441 ......... 30381 TATCAGG DQ310469 ....... AF121050 ....... AB243441 ....... 30381 GTCTGCTG DQ310469 ........ AF121050 ........ AB243441 ........ 276 334 453 511 453 511 463 521 335 392 512 569 512 569 522 579 393 451 570 628 570 628 580 638 CTTGTCGGTGGATCACTCGGTTCGTAGTTCGATGAAAAACGGGGCAAAAA......................................................................................................................................................GGCGTGAATTGCAGACATATTGAACGCTAAAATTTTGAACGCAAATGG-CAC................................................-...................................................-...................................................-...TTTATATCTGTTAGTATGTTTGGTTGAGGGTCGATTAATTCGTAACCTGCA.........................................................................................................................................................- 30381 452 TGACTGTTTTTT-CGATTAGTTATTTG-G-TT--T-TT--TT-ATCGAGTACCTTTT-T 500 DQ310469 629 ............-..............-.-..--.-..--..-..............-. 677 AF121050 629 ............-..............-.-..--.-..--..-..............-. 677 AB243441 639 ............-..........C...-A-..--C-.A--..-...........-. 684 30381 501 -GGAATGTGAATT--T--GATTGTCTAATTCGTTTCCTAATCG--AAACGAGCTATTTT 552 DQ310469 678 -............--.--.........................--.............. 729 AF121050 678 -............--.--.........................--.............. 729 AB243441 685 -............A-.T-.........................--............A. 738 30381 553 T-TGG 608 DQ310469 730 .-... 785 AF121050 730 .-... 785 AB243441 739 .G..- 793 30381 609 A-TA- 662 DQ310469 786 .-..- 839 AF121050 786 .-..- 839 AB243441 794 G-..T 842 TTA-TTTCTGTGCAATGTATTTTTGGTGTTTCGGCGTT-TTTCTTGCCGACTGA...-..................................-..................-..................................-...............C..-..........T......G.....-........C.-...............TACAAACTTAACAGT-TCGTATATTTTTCAGAATTT-TTCAGA-GGCCCTTACA...............-....................-......-.........................-....................-......-......................G..A.-............-....-....-.A..-.-...- 42 Acta agriculturae Slovenica, 91 - 1, maj 2008 30381 663 AG-AA 713 DQ310469 840 ..-.. 890 AF121050 840 ..-.. 890 AB243441 843 ..-.. 892 30381 DQ310469 AF121050 AB243441 714 891 891 893 CATCA-CTT-GACACAACACGTA-T-CGTTTGTCGAG-G--AATTGCGCAAGAA.....-...-.............-.-...........-.--..................-...-.............-.-...........-.--..............-.A.-..C-...........-.C.-.......T...-A--.............A-CTTTTCGTT--ACGACCTCAACCCAAGCAA .-.........TT...........T....... .-.........TT...........T....... .-.........TT...........T....... 742 921 921 923 Figure 2: Multiple sequence alignment of the ITS rDNA region (including partial fragments of the 18S and 28S rDNA genes) of 4 Steinernema species. Code 30381 correspond to the Slovenian isolate of Steinernema feltiae (B30). Codes DQ310469 and AF121050 are Steinernema feltiae strains from Russia and USA. Code AB243441 correspond to Steinernema litorale strain from Japan. We can place mentioned species into »feltiae group« of nematodes from genus Steinernema (Nguyen, 2006); for infective juveniles it is known that they are between 1000 and 700 m long (Fig. 3). This nematode lives in symbiosis with bacterium Xenorhabdus bovienii (Poinar, 1988). The nematode was first recorded in 1934, and its appliable value in biological control of insect pests is well known (Ebssa, 2001). Some researchers reported that S. feltiae, S. intermedium (or C1) and S. affine like to appear on agricultural land (Sturhan, 1996). In Europe, the occurrence of S. feltiae was up to now confirmed in Austria, Belgium, Great Britain, Czech Republic, Denmark (original), Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Poland, Slovakia, Spain, Sweden, Switzerland, Netherlands, Norway, Ukraine, Bolgaria and Portugal (Hominick, 2002). Figure 3: Infective juvenile of Steinernema feltiae from sample B30. Up to the present EPNs in Slovenia had a status of exotic agents and their efficacy against different insect pests was performed merely in laboratory experiments; Colorado potato beetle (Leptinotarsa decemlineata [Say]), greenhouse whitefly (Trialeurodes vaporariorum [Westwood]), western flower thrips (Frankliniella occidentalis [Pergande]) (Perme, 2005), sawtoothed grain beetle (Oryzaephilus surinamensis [L.]) and granary weevil (Sitophilus granarius [L.]) (Trdan et al., 2006) and flea beetles (Phyllotreta spp.) (Trdan et al., 2008). The results of these experiments confirmed already known facts that - in optimal conditions - EPNs represent very effective agents to control insect pests. After the first record of Steinernema feltiae in Slovenia, we expect that the use of these biological agents against insect pest will become important alternative to insecticides. These will be especially desired against the pests which is not easy to control with insecticides due to their massive occurrence in the period of harvesting, against the pests which are resistant to insecticides etc. B30 strain of S. feltiae will be in the future experiments used against different agricultural pests under laboratory conditions as well as in the experiments taken outside. ACKNOWLEDGEMENTS This work is a part of program Horticulture No P4-0013-0481 granted by Slovenian Ministry of Higher Education, Science and Technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Agriculturae Slovenica de Gruyter

Entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) recorded for the first time in Slovenia

Loading next page...
 
/lp/de-gruyter/entomopathogenic-nematode-steinernema-feltiae-filipjev-rhabditida-8hVvJy0nTp
Publisher
de Gruyter
Copyright
Copyright © 2008 by the
ISSN
1581-9175
eISSN
1854-1941
DOI
10.2478/v10014-008-0004-7
Publisher site
See Article on Publisher Site

Abstract

In Slovenia only recently entomopathogenic nematodes were recorded for the first time. In the beginning of 2007, the presence of Steinernema affine was confirmed. During the further investigations in the same year Steinernema feltiae was recorded on the arable field near Cerknica. In the previous year this field was planted with chicory. In Slovenia, until now the entomopathogenic nematodes had a status of an exotic agents and their use was allowed only in the laboratory experiments. We expect that in Slovenia the use of these biological agents against insect pests will become important alternative to insecticides as it is known in many other countries of the world. Key words biological control, entomopathogenic nematodes, exotic agents, Slovenia, Steinernema affine, Steinernema feltiae IZVLEýEK ENTOMOPATOGENA OGORýICA Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) PRVIý UGOTOVLJENA V SLOVENIJI V Sloveniji so bile entomopatogene ogorþice prviþ ugotovljene sele nedavno. V zaþetku leta 2007 je bila potrjena zastopanost vrste Steinernema affine, med nadaljnjimi raziskavami v istem letu pa je bila na njivi v blizini Cerknice najdena tudi ogorþica Steinernema feltiae. Na omenjenem zemljisþu so leto prej pridelovali radiþ. Doslej so imele entomopatogene ogorþice v Sloveniji status tujerodnih organizmov, njihova uporaba pa je bila dovoljena le v laboratorijskih poskusih. Priþakujemo, da bo v Sloveniji uporaba omenjenih naravnih sovraznikov skodljivih zuzelk postala pomembna alternativa insekticidom, kar je sicer ze znano v stevilnih drugih drzavah sveta. Kljuþne besede biotiþno varstvo, entomopatogene ogorþice, Slovenija, Steinernema affine, Steinernema feltiae, tujerodni organizmi, Young researcher, B. Sc., Jamnikarjeva 101, SI-1111 Ljubljana, email:ziga.laznik@bf.uni-lj.si Ph.D student, M. Sc., Vadastag 2, H-4244 Újfehértó, Hungary Ph. D, Vadastag 2, H-4244 Újfehértó, Hungary Assist. Prof., Ph. D, Jamnikarjeva 101, SI-1111 Ljubljana 38 Acta agriculturae Slovenica, 91 - 1, maj 2008 INTRODUCTION In Slovenia, the first research on entomopathogenic nematodes (EPNs) was carried out in 2004. Because in Slovenia EPNs still have a status of an exotic agents, all earlier researches were limited merely to laboratory experiments. The aim of previous research was to study the efficacy of the nematodes against foliar pests (Laznik et al., 2007). EPNs from the families Steinernematidae and Heterorhabditidae are important pathogens of insects. These soil organisms are mutually associated with bacteria from genus Photorhabdus Boemare, Akhurst and Mourant (genus Heterorhabditis) and bacteria from genus Xenorhabdus Thomas and Poinar (genus Steinernema) (Burnell and Stock, 2000). After infection, the symbiotic bacteria are released into the insect hemocoel, causing septicemia and death of the insect in 24 to 72 hours (Forst and Clarke, 2002). Because of broad spectrum of target hosts from the class Insecta, their application as a way of biological control of plants against pests is so far very well known (Kaya and Gaugler, 1993). Application of EPNs in biological control was traditionary engaged in controlling soil pests until some years ago (Ishibashi and Choi, 1991). Results from research in the last two decades indicate also their potential against foliar pests, but only under special conditions (Arthurs et al., 2004). Poorer efficacy of EPNs in controlling foliar pest is a consequence of unsuitable (too low) moisture (Lello et al., 1996), exposure to extreme temperatures (Grewal et al., 1994), and ultraviolet radiation (Gaugler and Boush, 1978). These factors are known as crucial for nematodes survival (Kaya, 1990). For this reason the efficacy of foliar pests with EPNs in the open is therefore often worser as expected, although predecessor laboratory tests shows rather better efficacy (Buitenhuis and Shipp, 2005). Numerous other research showed that at lower concentration EPNs are much more efficient in controlling preadult stages of insects from order Coleoptera (Ansari et al., 2003). Similar findings were also confirmed with controlling insects from other orders; Thysanoptera (Premachandra et al., 2003), Lepidoptera (Yakir-Ben et al., 1998), Diptera (Willmott et al., 2002) and some others. In majority of cases it was about the larvae, which life cycle is predominantly linked with soil and easily attacked by EPNs. 2 MATERIALS AND METHODS In October 2007, we examined 77 soil samples on the occurrence of EPNs in Slovenia. The soil samples were taken in Notranjska region of Slovenia, which is the south central part of the country. We used »Galleria bait method«, which is the most frequently used method of EPNs detection from soil. After the death of wax moth (Galleria mellonella [Linnaeus]) larvae, we dried cadavers for 12 days and put them in so called »White trap« (Bedding and Akhurst, 1975) to separate the nematodes from death larvae. With the received suspension we infected artificialy larvae of wax moth again. Following procedure contained the use of centrifuge and 5 % concetration of sodium hypoclorate. The aim of this process was to get infective juveniles from the suspension. We confirmed the presence of nematodes in 9.09 % of samples. Only 1 positive sample, B30 (taken on the chicory arable field near Cerknica (SW Slovenia, 45°48'N, 14°22'E, 572 m alt.) was identified to this time. RESULTS To confirm the identification of isolated nematodes from larvae of wax moth, a selected sample was analysed by molecular biological approach. Genomic DNA was extracted from individual nematodes and PCR was performed to multiply ITS region using primers TW81 and AB28 after Hominick et al. (1997). PCR product were reisolated from 1% TAE-buffered agarose gel using E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek, USA) (Fig. 1). Reisolated sample was sequenced in the laboratory of Agricultural Biotechnology Centre in Gödöll , Hungary. Sample DNA sequence was compared to sequences of species Steinernema using BLAST search in National Centre for Biotechnology Information (NCBI) web site (www.ncbi.nlm.nih.gov). The sequences producing significant alignments and at least 99% identity were derived from Steinernema feltiae: GenBank Accession No. DQ310469 and AF121050 (Nguyen et al., 2001) (Fig. 2). Figure 1: 1% TAE buffered agarose gel, in the 1st and 5th lanes: GeneRuler 100 bp DNA Ladder Plus (Fermentas), in the 2nd lane: PCR product of our sample B30, using the primer pair specified in the text, 3rd lane: PCR product of sample B49, 4th lane: PCR product of sample 3162. The two most strength fragment in the ladder are 500 and 1000 bps length. DISCUSSION Genetic studies proved that the nematode species is Steinernema feltiae Filipjev (1934) (Fig. 3). The ITS1-5.8S-ITS2 region, including the partial 18S and 28S rDNA genes (flanked by above primers) of Slovenian isolate B30 is 742bp long. 40 Acta agriculturae Slovenica, 91 - 1, maj 2008 BLAST searches (Altschul et al., 1990) in GenBank showed that Slovenian isolate B30 has a high similarity (99%) with those sequences available for S. feltiae populations (e.g. accession numbers DQ310469 and AF121050). Sequence of other species from feltiae group, namely S. litorale was obtained from GenBank searches that exhibited a lesser degree of similarity with the Slovenian isolate and other S. feltiae populations (e.g. accesion number AB243441) (Fig. 3). The present study constitutes the first report of S. feltiae in Slovenia. S. feltiae has a wide distribution in temperate regions, being one of the most common species found in Europe, and in many other parts of the world (for a detailed EPN species distribution see Hominick, 2002). 30381 1 GGCTTA-CCATTT-CTTGGATTCAAATGAATCGAGCTGAAT-TTTCGCTGTTCGTTTCA 56 DQ310469 177 .....T......A...........................-................. 233 AF121050 177 .....T......A...........................-................. 233 AB243441 198 .....T......A.........................C.-........A....C... 254 30381 57 CTGGAG 111 DQ310469 234 ...... 288 AF121050 234 ...... 288 AB243441 255 ...... 308 AAGCG-TTGT-ATTCTCTCAACTAACGGCTAT-GAATGGTTTCTATAGG-TGT.....-....-.....................-................-........-....-.....................-................-........-..-A-.....................-................-...- 30381 112 CAGTTGTATGAGCGTGACTGTGGTGATGGACAT-TTTG-GTGGCTCCTTAGTCG-GGTC 167 DQ310469 289 .................................-....-...............-.... 344 AF121050 289 .................................-....-...............-.... 344 AB243441 309 ................................--...-.-A.-.T...-..-.-- 354 30381 TCAATTA DQ310469 ....... AF121050 ....... AB243441 ....... 168 220 345 397 345 397 355 407 ACT-AGAATTAAAGAAGTCTGTT-A-TGACTCGCCGTTCTTA-AAAAACT...-...................-.-................-..........-...................-.-................-..........-...................-.-................-.......- 30381 221 ACGTTTGATC-AATTTGACTGCACCAGCC-GT-AGGTGT-ACTTAAAGATTTATCAAGT 275 DQ310469 398 ..........-..................-..-......-................... 452 AF121050 398 ..........-..................-..-......-................... 452 AB243441 408 ..........-..................-..-......-G.................. 462 30381 CCGTTATTT DQ310469 ......... AF121050 ......... AB243441 ......... 30381 TATCAGG DQ310469 ....... AF121050 ....... AB243441 ....... 30381 GTCTGCTG DQ310469 ........ AF121050 ........ AB243441 ........ 276 334 453 511 453 511 463 521 335 392 512 569 512 569 522 579 393 451 570 628 570 628 580 638 CTTGTCGGTGGATCACTCGGTTCGTAGTTCGATGAAAAACGGGGCAAAAA......................................................................................................................................................GGCGTGAATTGCAGACATATTGAACGCTAAAATTTTGAACGCAAATGG-CAC................................................-...................................................-...................................................-...TTTATATCTGTTAGTATGTTTGGTTGAGGGTCGATTAATTCGTAACCTGCA.........................................................................................................................................................- 30381 452 TGACTGTTTTTT-CGATTAGTTATTTG-G-TT--T-TT--TT-ATCGAGTACCTTTT-T 500 DQ310469 629 ............-..............-.-..--.-..--..-..............-. 677 AF121050 629 ............-..............-.-..--.-..--..-..............-. 677 AB243441 639 ............-..........C...-A-..--C-.A--..-...........-. 684 30381 501 -GGAATGTGAATT--T--GATTGTCTAATTCGTTTCCTAATCG--AAACGAGCTATTTT 552 DQ310469 678 -............--.--.........................--.............. 729 AF121050 678 -............--.--.........................--.............. 729 AB243441 685 -............A-.T-.........................--............A. 738 30381 553 T-TGG 608 DQ310469 730 .-... 785 AF121050 730 .-... 785 AB243441 739 .G..- 793 30381 609 A-TA- 662 DQ310469 786 .-..- 839 AF121050 786 .-..- 839 AB243441 794 G-..T 842 TTA-TTTCTGTGCAATGTATTTTTGGTGTTTCGGCGTT-TTTCTTGCCGACTGA...-..................................-..................-..................................-...............C..-..........T......G.....-........C.-...............TACAAACTTAACAGT-TCGTATATTTTTCAGAATTT-TTCAGA-GGCCCTTACA...............-....................-......-.........................-....................-......-......................G..A.-............-....-....-.A..-.-...- 42 Acta agriculturae Slovenica, 91 - 1, maj 2008 30381 663 AG-AA 713 DQ310469 840 ..-.. 890 AF121050 840 ..-.. 890 AB243441 843 ..-.. 892 30381 DQ310469 AF121050 AB243441 714 891 891 893 CATCA-CTT-GACACAACACGTA-T-CGTTTGTCGAG-G--AATTGCGCAAGAA.....-...-.............-.-...........-.--..................-...-.............-.-...........-.--..............-.A.-..C-...........-.C.-.......T...-A--.............A-CTTTTCGTT--ACGACCTCAACCCAAGCAA .-.........TT...........T....... .-.........TT...........T....... .-.........TT...........T....... 742 921 921 923 Figure 2: Multiple sequence alignment of the ITS rDNA region (including partial fragments of the 18S and 28S rDNA genes) of 4 Steinernema species. Code 30381 correspond to the Slovenian isolate of Steinernema feltiae (B30). Codes DQ310469 and AF121050 are Steinernema feltiae strains from Russia and USA. Code AB243441 correspond to Steinernema litorale strain from Japan. We can place mentioned species into »feltiae group« of nematodes from genus Steinernema (Nguyen, 2006); for infective juveniles it is known that they are between 1000 and 700 m long (Fig. 3). This nematode lives in symbiosis with bacterium Xenorhabdus bovienii (Poinar, 1988). The nematode was first recorded in 1934, and its appliable value in biological control of insect pests is well known (Ebssa, 2001). Some researchers reported that S. feltiae, S. intermedium (or C1) and S. affine like to appear on agricultural land (Sturhan, 1996). In Europe, the occurrence of S. feltiae was up to now confirmed in Austria, Belgium, Great Britain, Czech Republic, Denmark (original), Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Poland, Slovakia, Spain, Sweden, Switzerland, Netherlands, Norway, Ukraine, Bolgaria and Portugal (Hominick, 2002). Figure 3: Infective juvenile of Steinernema feltiae from sample B30. Up to the present EPNs in Slovenia had a status of exotic agents and their efficacy against different insect pests was performed merely in laboratory experiments; Colorado potato beetle (Leptinotarsa decemlineata [Say]), greenhouse whitefly (Trialeurodes vaporariorum [Westwood]), western flower thrips (Frankliniella occidentalis [Pergande]) (Perme, 2005), sawtoothed grain beetle (Oryzaephilus surinamensis [L.]) and granary weevil (Sitophilus granarius [L.]) (Trdan et al., 2006) and flea beetles (Phyllotreta spp.) (Trdan et al., 2008). The results of these experiments confirmed already known facts that - in optimal conditions - EPNs represent very effective agents to control insect pests. After the first record of Steinernema feltiae in Slovenia, we expect that the use of these biological agents against insect pest will become important alternative to insecticides. These will be especially desired against the pests which is not easy to control with insecticides due to their massive occurrence in the period of harvesting, against the pests which are resistant to insecticides etc. B30 strain of S. feltiae will be in the future experiments used against different agricultural pests under laboratory conditions as well as in the experiments taken outside. ACKNOWLEDGEMENTS This work is a part of program Horticulture No P4-0013-0481 granted by Slovenian Ministry of Higher Education, Science and Technology.

Journal

Acta Agriculturae Slovenicade Gruyter

Published: Jun 1, 2008

References