Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of boric acid on thermal stability of poly (acrylonitrile-methyl acrylate)

Effect of boric acid on thermal stability of poly (acrylonitrile-methyl acrylate) AbstractA series of acrylonitrile(AN)-methyl acrylate (MA) copolymers (AN/MA) with molar ratios of 100/0-70/30 were synthesized by water depositing polymerization. One to three percent of boric acid (BA) was adopted as a stabilizer to enhance the thermal stability of AN/MA. The copolymers and the mixtures of copolymers treated with BA were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (1H NMR), Gel Permeation Chromatography (GPC), Differential Scanning Calorimetry (DSC), Thermogravimetry (TG), X-ray diffraction (XRD) and Optic Microscope. The results show that melting point (Tm), glass transition temperature (Tg) and crystallinity of the copolymer decreased while decomposition temperature (Td) increased with the increase of MA content. Tm of AN/MA dropped to 174 °C and Td rose up to 321 °C when 15 mol% MA was incorporated. It was worthy to note that Tm of the copolymers increased conspicuously after being treated with BA. Stability of AN/MA with a molar ratio of 85/15 containing 1 wt% BA improved remarkably. The mixture can be kept stable up to 30 min at 220 °C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png e-Polymers de Gruyter

Effect of boric acid on thermal stability of poly (acrylonitrile-methyl acrylate)

e-Polymers , Volume 9 (1): 1 – Dec 1, 2009

Loading next page...
 
/lp/de-gruyter/effect-of-boric-acid-on-thermal-stability-of-poly-acrylonitrile-methyl-nO5MTLQaro

References (1)

Publisher
de Gruyter
Copyright
© 2013 by Walter de Gruyter GmbH & Co.
ISSN
2197-4586
eISSN
1618-7229
DOI
10.1515/epoly.2009.9.1.155
Publisher site
See Article on Publisher Site

Abstract

AbstractA series of acrylonitrile(AN)-methyl acrylate (MA) copolymers (AN/MA) with molar ratios of 100/0-70/30 were synthesized by water depositing polymerization. One to three percent of boric acid (BA) was adopted as a stabilizer to enhance the thermal stability of AN/MA. The copolymers and the mixtures of copolymers treated with BA were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (1H NMR), Gel Permeation Chromatography (GPC), Differential Scanning Calorimetry (DSC), Thermogravimetry (TG), X-ray diffraction (XRD) and Optic Microscope. The results show that melting point (Tm), glass transition temperature (Tg) and crystallinity of the copolymer decreased while decomposition temperature (Td) increased with the increase of MA content. Tm of AN/MA dropped to 174 °C and Td rose up to 321 °C when 15 mol% MA was incorporated. It was worthy to note that Tm of the copolymers increased conspicuously after being treated with BA. Stability of AN/MA with a molar ratio of 85/15 containing 1 wt% BA improved remarkably. The mixture can be kept stable up to 30 min at 220 °C.

Journal

e-Polymersde Gruyter

Published: Dec 1, 2009

There are no references for this article.