Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt

Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt Abstract The sessile drop method has been used for measurements of the surface tension of haplogranite (HPG) melts containing an excess of alkalis and phosphorous (HPG8, HPG8 + 5 wt% Li 2 O, 5 wt% Na 2 O, 20 wt% Na 2 O, 5 wt% K 2 O, 5 wt% Rb 2 O, 5 wt% Cs 2 O, 10 wt% P 2 O 5 ) and of Armenian rhyolite in the temperature interval, 650-1665 °C, and at 1 bar pressure. Sessile drops were placed on graphite substrates in a Pyrox tube furnace purged with Ar. Drop shape was monitored with a videocamera and stored in a videorecorder. The surface tension was calculated by measuring the two principal radii of curvature of the drop shape in vertical cross section. The precision of the method was checked against the surface tension of water. The surface tension of HPG and rhyolite melt is ~280-300 ± 5 mN/m in the temperature interval 1200-1400 °C. Temperature dependence of the surface tension of haplogranite melts and rhyolite is weak and positive (dσ/dT = 0.06 to 0.09 mN/m/°C). Addition of 5 wt% of alkali oxides (except Li 2 O) results in a decrease of the surface tension of haplogranite melts. The HPG melts with 10 wt% P 2 O 5 have 30% higher surface tension than haplogranite melts with excess alkalis, and a negative temperature derivative (dσ/dT = -0.1 mN/m/°C). The HPG melts with 20 wt% Na 2 O and 5 wt% Li 2 O exhibit a decrease in surface tension with temperature (dσ/dT = -0.02 and -0.10 mN/m/°C, respectively). The surface tension of HPG8 melt saturated with water at 1-4 kbar was measured on sessile drops quenched at high pressure in an internally heated gas vessel at temperatures of 800-1200 °C. Water pressure significantly decreases the surface tension of melt from 270 mN/m at 1 bar (1000 °C) to 65 mN/m at 4 kbar. At 1 bar in “dry” conditions, dσ/dT = +0.056 mN/m/°C and at 3 kbar of water pressure, dσ/dT = +0.075 mN/m/°C. The decrease in the surface tension of HPG melt at a water pressure of several kbars is from -10 to -30 mN/m/wt% H 2 O. The increase of water content to more than 10 wt% in granite melts may not result in any significant decrease in the surface tension, which may be explained by formation of a surface sublayer having physical properties very distinct from those of the bulk. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Mineralogist de Gruyter

Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt

Loading next page...
 
/lp/de-gruyter/effect-of-alkalis-phosphorus-and-water-on-the-surface-tension-of-sYi5aQ3043
Publisher
de Gruyter
Copyright
Copyright © 2000 by the
ISSN
0003-004X
eISSN
1945-3027
DOI
10.2138/am-2000-0105
Publisher site
See Article on Publisher Site

Abstract

Abstract The sessile drop method has been used for measurements of the surface tension of haplogranite (HPG) melts containing an excess of alkalis and phosphorous (HPG8, HPG8 + 5 wt% Li 2 O, 5 wt% Na 2 O, 20 wt% Na 2 O, 5 wt% K 2 O, 5 wt% Rb 2 O, 5 wt% Cs 2 O, 10 wt% P 2 O 5 ) and of Armenian rhyolite in the temperature interval, 650-1665 °C, and at 1 bar pressure. Sessile drops were placed on graphite substrates in a Pyrox tube furnace purged with Ar. Drop shape was monitored with a videocamera and stored in a videorecorder. The surface tension was calculated by measuring the two principal radii of curvature of the drop shape in vertical cross section. The precision of the method was checked against the surface tension of water. The surface tension of HPG and rhyolite melt is ~280-300 ± 5 mN/m in the temperature interval 1200-1400 °C. Temperature dependence of the surface tension of haplogranite melts and rhyolite is weak and positive (dσ/dT = 0.06 to 0.09 mN/m/°C). Addition of 5 wt% of alkali oxides (except Li 2 O) results in a decrease of the surface tension of haplogranite melts. The HPG melts with 10 wt% P 2 O 5 have 30% higher surface tension than haplogranite melts with excess alkalis, and a negative temperature derivative (dσ/dT = -0.1 mN/m/°C). The HPG melts with 20 wt% Na 2 O and 5 wt% Li 2 O exhibit a decrease in surface tension with temperature (dσ/dT = -0.02 and -0.10 mN/m/°C, respectively). The surface tension of HPG8 melt saturated with water at 1-4 kbar was measured on sessile drops quenched at high pressure in an internally heated gas vessel at temperatures of 800-1200 °C. Water pressure significantly decreases the surface tension of melt from 270 mN/m at 1 bar (1000 °C) to 65 mN/m at 4 kbar. At 1 bar in “dry” conditions, dσ/dT = +0.056 mN/m/°C and at 3 kbar of water pressure, dσ/dT = +0.075 mN/m/°C. The decrease in the surface tension of HPG melt at a water pressure of several kbars is from -10 to -30 mN/m/wt% H 2 O. The increase of water content to more than 10 wt% in granite melts may not result in any significant decrease in the surface tension, which may be explained by formation of a surface sublayer having physical properties very distinct from those of the bulk.

Journal

American Mineralogistde Gruyter

Published: Jan 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off