Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You and Your Team.

Learn More →

Determination of Elastic Parameters of Near-Surface Layers Over Subsidence Trough Development During Longwall Exploitation

Determination of Elastic Parameters of Near-Surface Layers Over Subsidence Trough Development... ReferencesBamford D., Nunn K.R., 1979. In Situ Seismic Measurements of Crack Anisotropy in the Carboniferous Limestone of Northwest England. Geophysical Prospecting 27 (2), 322-338. doi: 10.1111/j.1365-2478.1979.tb00973.x.Belfer I., Bruner I., Keydar S., Kravtsov A., Landa E., 1998. Detection of shallow objects using refracted and diffracted seismic waves. Journal of Applied Geophysics 38 (3),155-168.10.1016/S0926-9851(97)00025-6Blachowski J., Cacon S., Milczarek W., 2009. Analysis of post-mining ground deformations caused by underground coal extraction in complicated geological conditions. Acta Geodyn. Geomater 6, 351-357.Bogusz M., Mendecki M., 2011. Seismic and Geodetic Observations of Subsidence Trough Development Over a Longwall Face in a Coal Bed Under Extraction Geophysics. Idziak A.F, Dubiel R. (Eds). Mining and Environmental Protection. Springer, Berlin, 71-79. doi: 10.1007/978-3-642-19097-1_7.Carvalho J., Lisboa J.V., Torres L., Mendes-Victor L.A., 2000. Rock mass evaluation using in-situ velocity and attenuation measurements. European Journal Of Environmental And Engineering Geophysics 5, 15-31.Carvalho J., Torres L., Castro R., Dias R., Mendes-Victor L., 2009. Seismic velocities and geotechnical data applied to the soil microzoning of western Algarve, Portugal. Journal of Applied Geophysics 68 (2), 249-258. doi: 10.1016/j.jappgeo.2009.01.001.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000266740300012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Crampin S., McGonigle R., Bamford D., 1980. Estimating crack parameters from observations of P-wave velocity anisotropy. Geophysics 45 (3), 345-360.10.1190/1.1441086Dal Moro G., Moura R.M.M., Moustafa S.S., 2015a. Multi-component Joint Analysis of Surface Waves. Journal of Applied Geophysics 119, 128-138. doi: 10.1016/j.jappgeo.2015.05.014.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000357226300013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Dal Moro G., Pipan M., Gabrielli P., 2007. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. Journal of Applied Geophysics 61, 39-55. doi: 10.1016/j.jappgeo.2006.04.002.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000243608800003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Dal Moro G., Ponta R., Mauro R., 2015b. Unconventional optimized surface wave acquisition and analysis: Comparative tests in a perilagoon area. Journal of Applied Geophysics 114, 158-167. doi: 10.1016/j.jappgeo.2014.12.016.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000351247500014&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Doležalová H., Kajzar V., Souček K., Staš L., 2009. Evaluation of mining subsidence using GPS data. Acta Geodyn Geomater 6, 359-367.Doležalová H., Kajzar V., Souček K., Staš L., 2012. Analysis of surface movements from undermining in time. Acta Geodyn. Geomater 9, 389-400.Foti S., Lai C.G., Rix G.J., Strobbia C., 2014. Surface wave methods for near-surface site characterization. CRC Press.10.1201/b17268Gustkiewicz J., Zuberek W.M., Jochymczyk K., Kaczor D., 2002. Geophysical monitoring of soil deformation due to underground mining. Ogasawara H., Yanagidani T., Ando M. (Eds) Seismogenic Process Monitoring, AA Balkema Publishers, 25-36.Ismail A., Denny F.B., Metwaly M., 2014. Comparing continuous profiles from MASW and shear-wave reflection seismic methods. Journal of Applied Geophysics 105, 67-77. doi: 10.1016/j.jappgeo.2014.03.007.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000336820600007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Jochymczyk K., 2005. Levelling and seismic refraction measurements of ground subsidence in a mining area. Acta Geodyn. Geomater 2, 151-157.Kadlečík P., Kajzar V., Nekvasilová Z., Wegmüller U., Doležalová H., 2015. Evaluation of the subsidence based on dInSAR and GPS measurements near Karvina, Czech Republic. AUC Geographica 50 (1), 51-61. doi: 0.14712/23361980.2015.86.Kadlečík P., Schenk V., Seidlova Z., Schenková Z., 2010. Analysis of vertical movements detected by radar interferometry in urban areas. Acta Geodyn. Geomater 7, 371-380.Kajzar V., Doležalová H., 2013. Monitoring and Analysis of Surface Changes from Undermining. GeoScience Engineering 59 (4), 1-10. doi: 10.2478/gse-2014-0062.Karakostas V., Mirek K., Mesimeri M., Papadimitriou E., Mirek J., 2017. The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry. Pure and Applied Geophysics 174, 151-176. doi: 10.1007/s00024-016-1368-y.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000391362100008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Knothe S., 1980. Influence of time on the course of displacement, deformation of the rock mass and land surface caused by mining exploitation. Borecki M. (Ed.) Surface protection against mining damage, Wydawnictwo “Śląsk” Katowice (in Polish).Knothe S., 1984. Predicting the impacts of mining exploitation. Wydawnictwo “Śląsk” Katowice (in Polish).Kochmański T., 1980. Tadeusz Kochmański Theory. Borecki M (Ed.) Surface protection against mining damage, Wydawnictwo “Śląsk” Katowice (in Polish).Lin C.P., Chang C.C., Chang T.S., 2004. The use of MASW method in the assessment of soil liquefaction potential. Soil Dynamics and Earthquake Engineering 24 (9), 689-698. doi: 10.1016/j.soildyn.2004.06.012.Mirek K., Mirek J., 2016. Observation of underground exploitation influence on a surface in Budryk, Sośnica, and Makoszowy coal mine area. Polish Journal of Environmental Studies 25 (5A), 57-61.Park C.B., Miller R.D., Xia J., 1999. Multichannel analysis of surface waves. Geophysics 64(3), 800-808.10.1190/1.1444590Schön J.H., 1996. Physical Properties of Rocks: fundamentals and principles of Petrophysics. Pergamon Press, Oxford.Sloan S.D., Nolan J.J., Broadfoot S.W., McKenna J.R., Metheny O.M., 2013. Using near-surface seismic refraction tomography and multichannel analysis of surface waves to detect shallow tunnels: A feasibility study. Journal of Applied Geophysics 99, 60-65. doi: 10.1016/j.jappgeo.2013.10.004.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000329275400008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Stan-Kleczek I., Mendecki M.J., 2014. The use of active seismic methods to study seismic waves anisotropy in Triassic dolomites. Alejano R, Perucho A, Olalla C, Jiménez R (Eds) Rock Engineering and Rock Mechanics: Structures in and on Rock Masses. Taylor & Francis Group, London, 1213-1217.Stan-Kłeczek I., Mendecki M.J., 2016. Application of Multichannel Analysis of Surface Waves to S-Phase Wave Anisotropy Estimation. Acta Geophysica 64 (5), 1593-1604. doi: 10.1515/acgeo-2016-0058.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000388118500017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Turesson A., 2007. A comparison of methods for the analysis of compressional, shear, and surface wave seismic data, and determination of the shear modulus. Journal of Applied Geophysics 61 (2), 83-91. doi: 10.1016/j.jappgeo.2006.04.005.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000246503600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Xu C., Butt S.D., 2006. Evaluation of MASW techniques to image steeply dipping cavities in laterally inhomogeneous terrain. Journal of Applied Geophysics 59 (2), 106-116. doi: 10.1016/j.jappgeo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Mining Sciences de Gruyter

Determination of Elastic Parameters of Near-Surface Layers Over Subsidence Trough Development During Longwall Exploitation

Loading next page...
 
/lp/de-gruyter/determination-of-elastic-parameters-of-near-surface-layers-over-49x5Bkr7Cw
Publisher
de Gruyter
Copyright
© Archives of Mining Sciences
ISSN
1689-0469
eISSN
1689-0469
DOI
10.1515/amsc-2017-0050
Publisher site
See Article on Publisher Site

Abstract

ReferencesBamford D., Nunn K.R., 1979. In Situ Seismic Measurements of Crack Anisotropy in the Carboniferous Limestone of Northwest England. Geophysical Prospecting 27 (2), 322-338. doi: 10.1111/j.1365-2478.1979.tb00973.x.Belfer I., Bruner I., Keydar S., Kravtsov A., Landa E., 1998. Detection of shallow objects using refracted and diffracted seismic waves. Journal of Applied Geophysics 38 (3),155-168.10.1016/S0926-9851(97)00025-6Blachowski J., Cacon S., Milczarek W., 2009. Analysis of post-mining ground deformations caused by underground coal extraction in complicated geological conditions. Acta Geodyn. Geomater 6, 351-357.Bogusz M., Mendecki M., 2011. Seismic and Geodetic Observations of Subsidence Trough Development Over a Longwall Face in a Coal Bed Under Extraction Geophysics. Idziak A.F, Dubiel R. (Eds). Mining and Environmental Protection. Springer, Berlin, 71-79. doi: 10.1007/978-3-642-19097-1_7.Carvalho J., Lisboa J.V., Torres L., Mendes-Victor L.A., 2000. Rock mass evaluation using in-situ velocity and attenuation measurements. European Journal Of Environmental And Engineering Geophysics 5, 15-31.Carvalho J., Torres L., Castro R., Dias R., Mendes-Victor L., 2009. Seismic velocities and geotechnical data applied to the soil microzoning of western Algarve, Portugal. Journal of Applied Geophysics 68 (2), 249-258. doi: 10.1016/j.jappgeo.2009.01.001.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000266740300012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Crampin S., McGonigle R., Bamford D., 1980. Estimating crack parameters from observations of P-wave velocity anisotropy. Geophysics 45 (3), 345-360.10.1190/1.1441086Dal Moro G., Moura R.M.M., Moustafa S.S., 2015a. Multi-component Joint Analysis of Surface Waves. Journal of Applied Geophysics 119, 128-138. doi: 10.1016/j.jappgeo.2015.05.014.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000357226300013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Dal Moro G., Pipan M., Gabrielli P., 2007. Rayleigh wave dispersion curve inversion via genetic algorithms and marginal posterior probability density estimation. Journal of Applied Geophysics 61, 39-55. doi: 10.1016/j.jappgeo.2006.04.002.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000243608800003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Dal Moro G., Ponta R., Mauro R., 2015b. Unconventional optimized surface wave acquisition and analysis: Comparative tests in a perilagoon area. Journal of Applied Geophysics 114, 158-167. doi: 10.1016/j.jappgeo.2014.12.016.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000351247500014&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Doležalová H., Kajzar V., Souček K., Staš L., 2009. Evaluation of mining subsidence using GPS data. Acta Geodyn Geomater 6, 359-367.Doležalová H., Kajzar V., Souček K., Staš L., 2012. Analysis of surface movements from undermining in time. Acta Geodyn. Geomater 9, 389-400.Foti S., Lai C.G., Rix G.J., Strobbia C., 2014. Surface wave methods for near-surface site characterization. CRC Press.10.1201/b17268Gustkiewicz J., Zuberek W.M., Jochymczyk K., Kaczor D., 2002. Geophysical monitoring of soil deformation due to underground mining. Ogasawara H., Yanagidani T., Ando M. (Eds) Seismogenic Process Monitoring, AA Balkema Publishers, 25-36.Ismail A., Denny F.B., Metwaly M., 2014. Comparing continuous profiles from MASW and shear-wave reflection seismic methods. Journal of Applied Geophysics 105, 67-77. doi: 10.1016/j.jappgeo.2014.03.007.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000336820600007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Jochymczyk K., 2005. Levelling and seismic refraction measurements of ground subsidence in a mining area. Acta Geodyn. Geomater 2, 151-157.Kadlečík P., Kajzar V., Nekvasilová Z., Wegmüller U., Doležalová H., 2015. Evaluation of the subsidence based on dInSAR and GPS measurements near Karvina, Czech Republic. AUC Geographica 50 (1), 51-61. doi: 0.14712/23361980.2015.86.Kadlečík P., Schenk V., Seidlova Z., Schenková Z., 2010. Analysis of vertical movements detected by radar interferometry in urban areas. Acta Geodyn. Geomater 7, 371-380.Kajzar V., Doležalová H., 2013. Monitoring and Analysis of Surface Changes from Undermining. GeoScience Engineering 59 (4), 1-10. doi: 10.2478/gse-2014-0062.Karakostas V., Mirek K., Mesimeri M., Papadimitriou E., Mirek J., 2017. The Aftershock Sequence of the 2008 Achaia, Greece, Earthquake: Joint Analysis of Seismicity Relocation and Persistent Scatterers Interferometry. Pure and Applied Geophysics 174, 151-176. doi: 10.1007/s00024-016-1368-y.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000391362100008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Knothe S., 1980. Influence of time on the course of displacement, deformation of the rock mass and land surface caused by mining exploitation. Borecki M. (Ed.) Surface protection against mining damage, Wydawnictwo “Śląsk” Katowice (in Polish).Knothe S., 1984. Predicting the impacts of mining exploitation. Wydawnictwo “Śląsk” Katowice (in Polish).Kochmański T., 1980. Tadeusz Kochmański Theory. Borecki M (Ed.) Surface protection against mining damage, Wydawnictwo “Śląsk” Katowice (in Polish).Lin C.P., Chang C.C., Chang T.S., 2004. The use of MASW method in the assessment of soil liquefaction potential. Soil Dynamics and Earthquake Engineering 24 (9), 689-698. doi: 10.1016/j.soildyn.2004.06.012.Mirek K., Mirek J., 2016. Observation of underground exploitation influence on a surface in Budryk, Sośnica, and Makoszowy coal mine area. Polish Journal of Environmental Studies 25 (5A), 57-61.Park C.B., Miller R.D., Xia J., 1999. Multichannel analysis of surface waves. Geophysics 64(3), 800-808.10.1190/1.1444590Schön J.H., 1996. Physical Properties of Rocks: fundamentals and principles of Petrophysics. Pergamon Press, Oxford.Sloan S.D., Nolan J.J., Broadfoot S.W., McKenna J.R., Metheny O.M., 2013. Using near-surface seismic refraction tomography and multichannel analysis of surface waves to detect shallow tunnels: A feasibility study. Journal of Applied Geophysics 99, 60-65. doi: 10.1016/j.jappgeo.2013.10.004.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000329275400008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Stan-Kleczek I., Mendecki M.J., 2014. The use of active seismic methods to study seismic waves anisotropy in Triassic dolomites. Alejano R, Perucho A, Olalla C, Jiménez R (Eds) Rock Engineering and Rock Mechanics: Structures in and on Rock Masses. Taylor & Francis Group, London, 1213-1217.Stan-Kłeczek I., Mendecki M.J., 2016. Application of Multichannel Analysis of Surface Waves to S-Phase Wave Anisotropy Estimation. Acta Geophysica 64 (5), 1593-1604. doi: 10.1515/acgeo-2016-0058.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000388118500017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Turesson A., 2007. A comparison of methods for the analysis of compressional, shear, and surface wave seismic data, and determination of the shear modulus. Journal of Applied Geophysics 61 (2), 83-91. doi: 10.1016/j.jappgeo.2006.04.005.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000246503600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Xu C., Butt S.D., 2006. Evaluation of MASW techniques to image steeply dipping cavities in laterally inhomogeneous terrain. Journal of Applied Geophysics 59 (2), 106-116. doi: 10.1016/j.jappgeo.

Journal

Archives of Mining Sciencesde Gruyter

Published: Dec 20, 2017

There are no references for this article.