Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Denitrification of water using ZnO/Cu as the photocatalyst

Denitrification of water using ZnO/Cu as the photocatalyst AbstractThe ZnO:xCu photocatalyst was prepared with reacting media, namely, water method followed by wet impregnation to deposit Cu on the ZnO nano particles. X-ray diffraction was used to perform crystallography and the determination of the ZnO:xCu particle size. Fourier transform infrared was employed for the detection of chemical bonds in the synthesized photocatalyst. The nanoparticle morphology was studied by field emission scanning electron microscope. The elemental composition of the synthesized catalysts was evaluated with X-ray fluorescence technique. Diffuse reflection spectroscopy analysis was performed to investigate the light absorption of the ZnO:xCu catalysts. The photocatalytic activity of the prepared ZnO:xCu nanoparticles was studied for the removal of nitrate from the aqueous solution of ammonium nitrate (50 mg·l−1) under UV irradiation. Results indicated that the ZnO:xCu photocatalyst has high photocalytic activity to remove nitrate from water. Moreover, complete degradation was achieved after 2.5 h. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Green Processing and Synthesis de Gruyter

Denitrification of water using ZnO/Cu as the photocatalyst

Loading next page...
 
/lp/de-gruyter/denitrification-of-water-using-zno-cu-as-the-photocatalyst-4ae27eM5hp

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
de Gruyter
Copyright
©2018 Walter de Gruyter GmbH, Berlin/Boston
ISSN
2191-9550
eISSN
2191-9550
DOI
10.1515/gps-2016-0221
Publisher site
See Article on Publisher Site

Abstract

AbstractThe ZnO:xCu photocatalyst was prepared with reacting media, namely, water method followed by wet impregnation to deposit Cu on the ZnO nano particles. X-ray diffraction was used to perform crystallography and the determination of the ZnO:xCu particle size. Fourier transform infrared was employed for the detection of chemical bonds in the synthesized photocatalyst. The nanoparticle morphology was studied by field emission scanning electron microscope. The elemental composition of the synthesized catalysts was evaluated with X-ray fluorescence technique. Diffuse reflection spectroscopy analysis was performed to investigate the light absorption of the ZnO:xCu catalysts. The photocatalytic activity of the prepared ZnO:xCu nanoparticles was studied for the removal of nitrate from the aqueous solution of ammonium nitrate (50 mg·l−1) under UV irradiation. Results indicated that the ZnO:xCu photocatalyst has high photocalytic activity to remove nitrate from water. Moreover, complete degradation was achieved after 2.5 h.

Journal

Green Processing and Synthesisde Gruyter

Published: Jun 27, 2018

There are no references for this article.