Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract Background: Alongside the theoretical progress made in understanding the factors that influence firm growth, many methodological challenges are yet to be overcome. Authors point to the notion of interpretability of growth prediction models as an important prerequisite for further advancement of the field as well as enhancement of models’ practical values. Objectives: The objective of this study is to demonstrate the application of factor analysis for the purpose of increasing overall interpretability of the logistic regression model. The comprehensive nature of the growth phenomenon implies propensity of input data to be mutually correlated. In such situations, growth prediction models can demonstrate adequate predictability and accuracy, but still lack the clarity and theoretical soundness in their structure. Methods/Approach: The paper juxtaposes two prediction models: the first one is built using solely the logistic regression procedure, while the second one includes factor analysis prior to development of a logistic regression model. Results: Factor analysis enables researchers to mitigate inconsistencies and misalignments with a theoretical background in growth prediction models. Conclusions: Incorporating factor analysis as a step preceding the building of a regression model allows researchers to lessen model interpretability issues and create a model that is easier to understand, explain and apply in real-life business situations.
Business Systems Research Journal – de Gruyter
Published: Sep 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.