Access the full text.
Sign up today, get DeepDyve free for 14 days.
AbstractWe consider several concepts of computability (recursiveness) for sets in Euclidean space. A list of four ideal properties for such sets is proposed and it is shown in a very elementary way that no notion can satisfy all four desiderata. Most notions introduced here are essentially based on separability of ℝn and this is natural when thinking about operations on an actual digital computer where, in fact, rational numbers are the basis of everything. We enumerate some properties of some naïve but practical notions of recursive sets and contrast these with others, including the widely used and accepted notion of computable set developed by Weihrauch, Brattka and others which is based on the “Polish school” notion of a computable real function. We also offer a conjecture about the Mandelbrot set.
Pure Mathematics and Applications – de Gruyter
Published: Oct 1, 2022
Keywords: Computability of sets; separability; computable function; impossibility results; Mandelbrot set; 03D80; 03D78
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.