Cell Therapy and Transplantation in Parkinsons Disease

Cell Therapy and Transplantation in Parkinsons Disease Abstract Transplanted human fetal dopamine neurons can reinnervate the striatum in patients with Parkinson's disease (PD). Recent findings using positron emission tomography indicate that the grafts are functionally integrated and restore dopamine release in the patient's striatum. The grafts can exhibit long-term survival without immunological rejection and despite an ongoing disease process and continuous antiparkinsonian drug treatment. In the most successful cases, patients have been able to withdraw L-dopa treatment after transplantation and resume an independent life. About two-thirds of grafted patients have shown clinically useful, partial recovery of motor function. The major obstacle for the further development of this cell replacement strategy is that large amounts of human fetal mesencephalic tissue are needed for therapeutic effects. Stem cells hold promise as a virtually unlimited source of self-renewing progenitors for transplantation. The possibility to generate dopamine neurons from such cells is now being explored using different approaches. However, so far the generated neurons have survived poorly after transplantation in animals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clinical Chemistry and Laboratory Medicine (CCLM) de Gruyter

Cell Therapy and Transplantation in Parkinsons Disease

Loading next page...
 
/lp/de-gruyter/cell-therapy-and-transplantation-in-parkinsons-disease-EbpPBlvbeO
Publisher
de Gruyter
Copyright
Copyright © 2001 by the
ISSN
1434-6621
DOI
10.1515/CCLM.2001.056
Publisher site
See Article on Publisher Site

Abstract

Abstract Transplanted human fetal dopamine neurons can reinnervate the striatum in patients with Parkinson's disease (PD). Recent findings using positron emission tomography indicate that the grafts are functionally integrated and restore dopamine release in the patient's striatum. The grafts can exhibit long-term survival without immunological rejection and despite an ongoing disease process and continuous antiparkinsonian drug treatment. In the most successful cases, patients have been able to withdraw L-dopa treatment after transplantation and resume an independent life. About two-thirds of grafted patients have shown clinically useful, partial recovery of motor function. The major obstacle for the further development of this cell replacement strategy is that large amounts of human fetal mesencephalic tissue are needed for therapeutic effects. Stem cells hold promise as a virtually unlimited source of self-renewing progenitors for transplantation. The possibility to generate dopamine neurons from such cells is now being explored using different approaches. However, so far the generated neurons have survived poorly after transplantation in animals.

Journal

Clinical Chemistry and Laboratory Medicine (CCLM)de Gruyter

Published: Apr 25, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off