Approximation of Information Divergences for Statistical Learning with Applications

Approximation of Information Divergences for Statistical Learning with Applications AbstractIn this paper we give a partial response to one of the most important statistical questions, namely, what optimal statistical decisions are and how they are related to (statistical) information theory. We exemplify the necessity of understanding the structure of information divergences and their approximations, which may in particular be understood through deconvolution. Deconvolution of information divergences is illustrated in the exponential family of distributions, leading to the optimal tests in the Bahadur sense. We provide a new approximation of I-divergences using the Fourier transformation, saddle point approximation, and uniform convergence of the Euler polygons. Uniform approximation of deconvoluted parts of I-divergences is also discussed. Our approach is illustrated on a real data example. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematica Slovaca de Gruyter

Approximation of Information Divergences for Statistical Learning with Applications

Loading next page...
 
/lp/de-gruyter/approximation-of-information-divergences-for-statistical-learning-with-sVQtyGPBGk
Publisher
de Gruyter
Copyright
© 2018 Mathematical Institute Slovak Academy of Sciences
ISSN
0139-9918
eISSN
1337-2211
DOI
10.1515/ms-2017-0177
Publisher site
See Article on Publisher Site

Abstract

AbstractIn this paper we give a partial response to one of the most important statistical questions, namely, what optimal statistical decisions are and how they are related to (statistical) information theory. We exemplify the necessity of understanding the structure of information divergences and their approximations, which may in particular be understood through deconvolution. Deconvolution of information divergences is illustrated in the exponential family of distributions, leading to the optimal tests in the Bahadur sense. We provide a new approximation of I-divergences using the Fourier transformation, saddle point approximation, and uniform convergence of the Euler polygons. Uniform approximation of deconvoluted parts of I-divergences is also discussed. Our approach is illustrated on a real data example.

Journal

Mathematica Slovacade Gruyter

Published: Oct 25, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off