Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide

An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide ReferencesBaran P., Zarębska K., Czuma N., 2016. CO2 adsorption properties of char produced from brown coal impregnated with alcohol amine solutions. Environmental Monitoring and Assessment, July 2016, 188:416Bustin R.M., Clarkson C.R., 1998. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology 38, 3-26.Crank, J., 1975: The Mathematics of diffusion, 2nd ed. Oxford Univ. Press, London. 414.Czerw K., Baran P., Zarębska K., 2017. Application of the stretched exponential equation to sorption of mine gases and sorption induced swelling of bituminous coal. International Journal of Coal Geology 173, 76-83.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000403120400007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Denis J., Pone N., Halleck P.M., Mathews J.P., 2009. Sorption Capacity and Sorption Kinetic Measurements of CO2 and CH4in Confined and Unconfined Bituminous Coal. Energy Fuels 23 (9), 4688-4695.10.1021/ef9003158http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000270671500063&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Dutka B., Topolnicki J., 2011. Badania właściwości sorpcyjno-odkształceniowych węgla w stanie obciążenia okólnego. Prace Instytutu Mechaniki Górotworu PAN 13, 1-4, 31-35 (in polish).Dutka B., Kudasik M., Pokryszka Z., Skoczylas N., Topolnicki J., Wierzbicki M., 2013. Balance of CO2/CH4 exchange sorption in a coal briquette. Fuel Processing Technology 106, 95-101.10.1016/j.fuproc.2012.06.029Hol S., Peach C.J., Spiers C.J. 2011. Applied stress reduces the CO2 sorption capacity of coal. International Journal of Coal Geology 85, 1, 1 January 2011, 128-142.Kędzior S., 2009. Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). International Journal of Coal Geology 80, 1, 20-34.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000270618400002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Kędzior S., Jelonek I., 2013. Reservoir parameters and maceral composition of coal in different Carboniferous lithostratigraphical series of the Upper Silesian Coal Basin. Poland. International Journal of Coal Geology 111, 98-105.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318139100010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.coal.2012.08.007Kędzior S., 2015. Methane contents and coal-rank variability in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology 139, 152-1641.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000354340800013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Konicek P., Soucek K., Stas L., Singh R., 2013. Long-hole destress blasting for rockburst control during deep underground coal mining. International Journal of Rock Mechanics and Mining Sciences 61, 141-153.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000320494600012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Krause E., Skiba J., 2014. Formation of methane hazard in longwall coal mines with increasingly higher production capacity. International Journal of Mining Science and Technology 24, 3, 403-407.10.1016/j.ijmst.2014.03.020Kudasik M., Skoczylas N., Pajdak A., 2017. The repeatability of sorption processes occurring in the coal-methane system during multiple measurement series. Energies 2017, 10, 661. DOI: 10.3390/en10050661Skoczylas N., 2012. Laboratory study of the phenomenon of methane and coal outburst. International Journal of Rock Mechanics and Mining Sciences 55, 102-107.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310408900012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Skoczylas N., 2016. Fast evaluation of the coalbed methane content of coal viewed as an element in improving safety conditions of mining operations. Mineral Resources Management 32, 2, 5-30.Weishauptová Z., Přibyl O., Sýkorová I., Machovič V. 2015. Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption. Fuel 139, 115-124.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345434700017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Wang Z., Tang X., Yue G., Kang B., Xie C., Li X., 2015. Physical simulation of temperature influence on methane sorption and kinetics in coal: Benefits of temperature under 273.15 K. Fuel 158, 207-216.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000357670100025&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3van Bergen F., Pagnier H.J.M., van der Meer L.G.H., Belt F.J.G. van den, Winthaegen P.L.A., Westerhoff R.S., 2003. Greenhouse Gas Control Technologies – 6th International Conference. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies 1-4 October 2002, Kyoto, Japan, 569-574.Wierzbicki M., 2003. Rozkład naprężeń rezydualnych w brykiecie węglowym – wyniki eksperymentalne i analityczne. Prace Instytutu Mechaniki Górotworu PAN 5, 1, 161-166 (in polish).Wierzbicki M, 2003a. Zmiany stanu naprężenia i wytężenia materiału w trakcie prowokowania i inicjacji laboratoryjnego wyrzutu skalno-gazowego. IMG PAN, Rozprawy, Monografie 4, 134 (in polish).Wierzbicki M. 2013. Changes in the sorption/diffusion kinetics of a coal-methane system caused by different temperatures and pressures. T. Mineral Resources Management 29, 4, 155-168.Wierzbicki M., 2013a. The effect of temperature on the sorption properties of coal from Upper Silesian Coal Basin, Poland. Archives of Mining Sciences 58, 4, 1163-1176.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000330177600011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Mining Sciences de Gruyter

An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide

Archives of Mining Sciences , Volume 62 (3): 12 – Sep 1, 2017

Loading next page...
 
/lp/de-gruyter/an-impact-of-mechanical-stress-in-coal-briquettes-on-sorption-of-T03NgCCLTR
Publisher
de Gruyter
Copyright
© 2017 Mirosław Wierzbicki, published by De Gruyter Open
ISSN
1689-0469
eISSN
1689-0469
DOI
10.1515/amsc-2017-0036
Publisher site
See Article on Publisher Site

Abstract

ReferencesBaran P., Zarębska K., Czuma N., 2016. CO2 adsorption properties of char produced from brown coal impregnated with alcohol amine solutions. Environmental Monitoring and Assessment, July 2016, 188:416Bustin R.M., Clarkson C.R., 1998. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology 38, 3-26.Crank, J., 1975: The Mathematics of diffusion, 2nd ed. Oxford Univ. Press, London. 414.Czerw K., Baran P., Zarębska K., 2017. Application of the stretched exponential equation to sorption of mine gases and sorption induced swelling of bituminous coal. International Journal of Coal Geology 173, 76-83.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000403120400007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Denis J., Pone N., Halleck P.M., Mathews J.P., 2009. Sorption Capacity and Sorption Kinetic Measurements of CO2 and CH4in Confined and Unconfined Bituminous Coal. Energy Fuels 23 (9), 4688-4695.10.1021/ef9003158http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000270671500063&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Dutka B., Topolnicki J., 2011. Badania właściwości sorpcyjno-odkształceniowych węgla w stanie obciążenia okólnego. Prace Instytutu Mechaniki Górotworu PAN 13, 1-4, 31-35 (in polish).Dutka B., Kudasik M., Pokryszka Z., Skoczylas N., Topolnicki J., Wierzbicki M., 2013. Balance of CO2/CH4 exchange sorption in a coal briquette. Fuel Processing Technology 106, 95-101.10.1016/j.fuproc.2012.06.029Hol S., Peach C.J., Spiers C.J. 2011. Applied stress reduces the CO2 sorption capacity of coal. International Journal of Coal Geology 85, 1, 1 January 2011, 128-142.Kędzior S., 2009. Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). International Journal of Coal Geology 80, 1, 20-34.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000270618400002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Kędzior S., Jelonek I., 2013. Reservoir parameters and maceral composition of coal in different Carboniferous lithostratigraphical series of the Upper Silesian Coal Basin. Poland. International Journal of Coal Geology 111, 98-105.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318139100010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.coal.2012.08.007Kędzior S., 2015. Methane contents and coal-rank variability in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology 139, 152-1641.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000354340800013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Konicek P., Soucek K., Stas L., Singh R., 2013. Long-hole destress blasting for rockburst control during deep underground coal mining. International Journal of Rock Mechanics and Mining Sciences 61, 141-153.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000320494600012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Krause E., Skiba J., 2014. Formation of methane hazard in longwall coal mines with increasingly higher production capacity. International Journal of Mining Science and Technology 24, 3, 403-407.10.1016/j.ijmst.2014.03.020Kudasik M., Skoczylas N., Pajdak A., 2017. The repeatability of sorption processes occurring in the coal-methane system during multiple measurement series. Energies 2017, 10, 661. DOI: 10.3390/en10050661Skoczylas N., 2012. Laboratory study of the phenomenon of methane and coal outburst. International Journal of Rock Mechanics and Mining Sciences 55, 102-107.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000310408900012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Skoczylas N., 2016. Fast evaluation of the coalbed methane content of coal viewed as an element in improving safety conditions of mining operations. Mineral Resources Management 32, 2, 5-30.Weishauptová Z., Přibyl O., Sýkorová I., Machovič V. 2015. Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption. Fuel 139, 115-124.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000345434700017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Wang Z., Tang X., Yue G., Kang B., Xie C., Li X., 2015. Physical simulation of temperature influence on methane sorption and kinetics in coal: Benefits of temperature under 273.15 K. Fuel 158, 207-216.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000357670100025&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3van Bergen F., Pagnier H.J.M., van der Meer L.G.H., Belt F.J.G. van den, Winthaegen P.L.A., Westerhoff R.S., 2003. Greenhouse Gas Control Technologies – 6th International Conference. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies 1-4 October 2002, Kyoto, Japan, 569-574.Wierzbicki M., 2003. Rozkład naprężeń rezydualnych w brykiecie węglowym – wyniki eksperymentalne i analityczne. Prace Instytutu Mechaniki Górotworu PAN 5, 1, 161-166 (in polish).Wierzbicki M, 2003a. Zmiany stanu naprężenia i wytężenia materiału w trakcie prowokowania i inicjacji laboratoryjnego wyrzutu skalno-gazowego. IMG PAN, Rozprawy, Monografie 4, 134 (in polish).Wierzbicki M. 2013. Changes in the sorption/diffusion kinetics of a coal-methane system caused by different temperatures and pressures. T. Mineral Resources Management 29, 4, 155-168.Wierzbicki M., 2013a. The effect of temperature on the sorption properties of coal from Upper Silesian Coal Basin, Poland. Archives of Mining Sciences 58, 4, 1163-1176.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000330177600011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3

Journal

Archives of Mining Sciencesde Gruyter

Published: Sep 1, 2017

References