Energy balance as a determinant of two-phase growth in cephalopods

Energy balance as a determinant of two-phase growth in cephalopods Many cephalopods exhibit early exponential growth, which abruptly shifts to a much slower rate. Using a simple model of the energy balance between intake from food and expenditure in growth plus metabolism, we consider how the two-phase growth pattern may be explained in terms of energy conservation. We determine the post-hatch size and age at which exponential growth would be expected to terminate. The model is tested with laboratory hatchling data obtained for the giant Australian cuttlefish Sepia apama . Together with growth data obtained for a related species, Sepia officinalis , model projections for critical transition size and age interestingly suggest that the metabolism of S. apama in the natural habitat may be three to four times higher than in captivity. A sensitivity analysis indicates that the critical transition size is in general more sensitive than critical transition time to any invoked changes in metabolic rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine & Freshwater Research CSIRO Publishing

Energy balance as a determinant of two-phase growth in cephalopods

Loading next page...
 
/lp/csiro-publishing/energy-balance-as-a-determinant-of-two-phase-growth-in-cephalopods-im8hWklEfd
Publisher
CSIRO Publishing
Copyright
CSIRO
ISSN
1323-1650
eISSN
1323-1650
D.O.I.
10.1071/MF03154
Publisher site
See Article on Publisher Site

Abstract

Many cephalopods exhibit early exponential growth, which abruptly shifts to a much slower rate. Using a simple model of the energy balance between intake from food and expenditure in growth plus metabolism, we consider how the two-phase growth pattern may be explained in terms of energy conservation. We determine the post-hatch size and age at which exponential growth would be expected to terminate. The model is tested with laboratory hatchling data obtained for the giant Australian cuttlefish Sepia apama . Together with growth data obtained for a related species, Sepia officinalis , model projections for critical transition size and age interestingly suggest that the metabolism of S. apama in the natural habitat may be three to four times higher than in captivity. A sensitivity analysis indicates that the critical transition size is in general more sensitive than critical transition time to any invoked changes in metabolic rate.

Journal

Marine & Freshwater ResearchCSIRO Publishing

Published: Jun 22, 2004

Keywords: critical transition size, critical transition time, cuttlefish, energy conservation, growth, metabolism.

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off