New types of chirped soliton solutions for the Fokas–Lenells equation
Abstract
<jats:sec>
<jats:title content-type="abstract-subheading">Purpose</jats:title>
<jats:p>The purpose of this paper is to present a reliable treatment of the Fokas–Lenells equation, an integrable generalization of the nonlinear Schrödinger equation. The authors use a special complex envelope traveling-wave solution to carry out the analysis. The study confirms the accuracy and efficiency of the used method.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title>
<jats:p>The proposed technique, namely, the trial equation method, as presented in this work has been shown to be very efficient for solving nonlinear equations with spatio-temporal dispersion.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Findings</jats:title>
<jats:p>A class of chirped soliton-like solutions including bright, dark and kink solitons is derived. The associated chirp, including linear and nonlinear contributions, is also determined for each of these optical pulses. Parametric conditions for the existence of chirped soliton solutions are presented.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Research limitations/implications</jats:title>
<jats:p>The paper presents a new efficient algorithm for handling an integrable generalization of the nonlinear Schrödinger equation.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Practical/implications</jats:title>
<jats:p>The authors present a useful algorithm to handle nonlinear equations with spatial-temporal dispersion. The method is an effective method with promising results.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Social/implications</jats:title>
<jats:p>This is a newly examined model. A useful method is presented to offer a reliable treatment.</jats:p>
</jats:sec>
<jats:sec>
<jats:title content-type="abstract-subheading">Originality/value</jats:title>
<jats:p>The paper presents a new efficient algorithm for handling an integrable generalization of the nonlinear Schrödinger equation.</jats:p>
</jats:sec>